Input Data for the Numerical Simulation of Metal Cutting

Article Preview

Abstract:

This paper is focused on the fundamentals of metal cutting and is aimed at enabling the readers to recognize the validity of test calibration procedures, to identify the possible sources of modelling errors and to understand the routes to improve the overall accuracy and reliability of physical, tribological and mechanical input data for the numerical simulation of metal cutting processes. Innovative testing equipments, experimental methodologies and numerical procedures developed by the authors give support to the presentation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

257-266

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Mackerle: Finite-element analysis and simulation of machining: a bibliography (1976–1996), J. Mater. Process. Tec., 86, (1999), 17–44.

DOI: 10.1016/s0924-0136(98)00227-1

Google Scholar

[2] J. Mackerle: Finite element analysis and simulation of machining: an addendum: A bibliography (1996–2002), Int. J. Mach. Tools Manuf., 43, (2003), 103-114.

DOI: 10.1016/s0890-6955(02)00162-1

Google Scholar

[3] A. E. Tekkaya and P. A. F. Martins: Accuracy, reliability and validity of finite element analysis in metal forming: a user's perspective, Eng. Comput., 26, (2009), 1026-1055.

DOI: 10.1108/02644400910996880

Google Scholar

[4] C. M. Silva, P. A. R. Rosa and P. A. F. Martins: An innovative electromagnetic compressive split Hopkinson bar, Int. J. Mech. Mater. Des., 5, (2009), 281-288.

DOI: 10.1007/s10999-009-9101-y

Google Scholar

[5] W. Grzesik, Z. Zalisz, P. Nieslony: Friction and wear testing of multilayer coatings on carbide substrates for dry machining applications, Surf. Coat. Tech., 155, (2002), 37–45.

DOI: 10.1016/s0257-8972(02)00040-3

Google Scholar

[6] V. A. M. Cristino, P. A. R. Rosa and P. A. F. Martins: On the utilization of pin-on-disc simulative tests for the calibration of friction in metal cutting, J. Eng. Tribol., 224, (2010), 169-177.

DOI: 10.1243/13506501jet639

Google Scholar

[7] V. P. Astakhov: Tribology of metal cutting, Elsevier, (2006), Oxford.

Google Scholar

[8] V. A. M. Cristino, P. A. R. Rosa and P. A. F. Martins: Cutting under active and inert gas shields: a contribution to the mechanics of chip flow, Int. J. Mach. Tools Manuf., 50, (2010), 892-900.

DOI: 10.1016/j.ijmachtools.2010.06.003

Google Scholar

[9] N. Zorev: Metal cutting mechanics, Pergamon Press, (1966), Oxford.

Google Scholar

[10] M. C. Shaw: Metal cutting principles, Clarendon Press, (1984), Oxford.

Google Scholar

[11] P. L. Oxley: Mechanics of machining: An analytical approach to assessing machinability, John Wiley & Sons, (1989), New York.

Google Scholar

[12] A. G. Atkins: Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems, Int. J. Mech. Sci., 45, (2003), 373-396.

DOI: 10.1016/s0020-7403(03)00040-7

Google Scholar

[13] P. A. R. Rosa, P. A. F. Martins and A. G. Atkins: Revisiting the fundamentals of metal cutting by means of finite elements and ductile fracture mechanics, Int. J. Mach. Tools Manuf., 47, (2007), 607–617.

DOI: 10.1016/j.ijmachtools.2006.05.003

Google Scholar

[14] P. A. R. Rosa, O. Kolednik, P. A. F. Martins and A. G. Atkins: The transient beginning to machining and the transition to steady-state cutting, Int. J. Mach. Tools Manuf., 47, (2007), 1904–1915.

DOI: 10.1016/j.ijmachtools.2007.03.005

Google Scholar

[15] M. L. Alves, J. M. C. Rodrigues and P. A. F. Martins: Simulation of three-dimensional bulk forming processes by the finite element flow formulation, Model. Simul. Mater. Sci. Eng. – Inst. Phys., 11, (2003), 803-821

DOI: 10.1088/0965-0393/11/5/307

Google Scholar