Modulation-Assisted Machining: A New Paradigm in Material Removal Processes

Article Preview

Abstract:

Modulation Assisted Machining (MAM), based on controlled superimposition of low-frequency modulation to conventional machining, effects discrete chip formation and disrupts the severe contact condition at the tool-chip interface. The underlying theory of discrete chip formation and its implications are briefly described and illustrated. Benefits such as improved chip management and lubrication, reduction of tool wear, enhanced material removal, particulate manufacturing and surface texturing are highlighted using case studies. MAM represents a new paradigm for machining in that it deliberately employs ‘good vibrations’ to enhance machining performance and capability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

514-522

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Shaw: Metal cutting principles (Oxford Univ. Press, Oxford 1984).

Google Scholar

[2] K. Nakayama: Bull. Fac. Eng. Yokohama Natl. Univ. Japan Vol. 8 (1959), p.1.

Google Scholar

[3] E.D. Doyle, J.G. Horne and D. Tabor: Proc. R. Soc. Lond. A. Math. Phys. Sci. Vol. 366 (1979), p.173.

Google Scholar

[4] V. Madhavan, S. Chandrasekar and T.N. Farris: J. Tribol. Vol. 124 (2002), p.617.

Google Scholar

[5] L. De Chiffre: Int. J. Mach. Tool Des. Res. Vol. 17 (1977), p.225.

Google Scholar

[6] C. Huang, S. Lee, J.P. Sullivan and S. Chandrasekar: Tribol. Lett. Vol. 28-1 (2007), p.39.

Google Scholar

[7] S. Tobias and W. Fishwick: Trans ASME Vol. 80 (1958), p.1079.

Google Scholar

[8] S. Doi and S. Kato: Trans ASME Vol. 78 (1956), p.1127.

Google Scholar

[9] H. Findley, US Patent 3,174,404. (1965)

Google Scholar

[10] J. Kumabe: Vibration cutting – basic principle and application (Jikkyo Shuppan Books, Japan 1979).

Google Scholar

[11] W. Moscoso, E. Olgun, W.D. Compton and S. Chandrasekar: J. Tribol. Vol. 127 (2005), p.238.

Google Scholar

[12] P.N. Chhabra, B. Ackroyd, W.D. Compton and S. Chandrasekar: Proc. Inst. Mech. Eng. B: J. Eng. Manuf. Vol. 216 (2002), p.321.

Google Scholar

[13] J.B. Mann, C. Saldana, W. Moscoso, W.D. Compton and S. Chandrasekar: Tribol. Lett. Vol. 35-3 (2009), p.221.

Google Scholar

[14] T. Moriwaki and E. Shamoto: Ann. CIRP Vol. 40-1 (1991), p.559.

Google Scholar

[15] J.B. Mann, S. Chandrasekar and W.D. Compton, US Patent 7,587,965. (2009)

Google Scholar

[16] J.B. Mann, C. Saldana, S. Chandrasekar, W.D. Compton and K.P. Trumble: Scr. Mater. Vol. 57-10 (2007), p.909.

Google Scholar

[17] J.B. Mann, S. Chandrasekar and W.D. Compton, US Patent 7,628,099. (2009)

Google Scholar

[18] C. Saldana: MS Thesis, Purdue University, US. (2006)

Google Scholar

[19] S. Smith, B. Woody, W. Barkman and D. Tursky: Ann. CIRP Vol. 58-1 (2009), p.97.

Google Scholar

[20] K.J. Stout, E.J. Davis and P. Sullivan: Atlas of machined surfaces (Chapman and Hall, UK 1990).

Google Scholar