FEA-Methodology for the Prediction of Aluminium Thin Walled Part Deformation in Dry Milling Operations

Article Preview

Abstract:

The presented work is a part of the EU integrated and collaborative project “Aligning, Holding and Fixing Flexible and Difficult to Handle Components” (AFFIX). The deformation of thin-walled components, caused by a thermo-mechanical load in the machining process, is a common challenge in manufacturing automotive engine heads and gearboxes. Geometrical tolerances like flatness are strongly affected by the thermo-mechanical process loads, and therefore cause production scraps and serious engine faults in case of undetected defects. To avoid long process setup times, a methodology has been developed to calculate the resulting part flatness. Based on the developed methodology a clamping strategy has been identified which minimises the resulting part deformation in milling operations and thus ensures the accuracy and quality of thin-walled aluminum power train parts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

662-670

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Kienzle.: Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z Vol. 94 Iss. 11/12 (1992), p.299–305

Google Scholar

[2] J. C. Aurich, J.C., H. Bil.: 3D Finite Element Modelling of Segmented Chip Formation. In: CIRP Annals - Manufacturing Technology. Vol. 55/ 1, pp.47-50, (2006)

DOI: 10.1016/s0007-8506(07)60363-1

Google Scholar

[3] D. Biermann, F. Höhne, B. Sieben, A. Zabel.: Finite element modeling and three-dimensional simulation of the turning process incorporating the material hardness. International Journal of Material Forming, Vol. 3 (2010), pp.459-462

DOI: 10.1007/s12289-010-0806-0

Google Scholar

[4] B. Denkena, V. Jivishov: Größeneinflüsse auf die Spanbildung, Zerspankräfte und Eigenspannungen beim Drehen – Experiment und Simulation. Strahltechnik Band 27, Prozessskalierung, Hrsg.: F. Vollertsen, BIAS Verlag Bremen (2005)

Google Scholar

[5] J. Leopold, R. Neugebauer.: A Finite Element Study of the Effect of Friction on Chip- and Burr-Formation in Orthogonal Metal Cutting. Proceedings of the 7th CIRP Workshop on Modeling of Machining Operations. Cluny, France (2004), pp.125-132

Google Scholar

[6] F. Klocke: Fertigungsverfahren – Drehen, Fräsen, Bohren, VDI-Buch, 8th Ed., Berlin: Springer (2008)

Google Scholar

[7] H.K. Tönshoff, B. Denkena, B.: Spanen – Grundlagen, 2nd Ed., Berlin: Springer (2004)

Google Scholar

[8] H. Schönherr, H.: Spanende Fertigung, Munich: Oldenbourg (2002)

Google Scholar

[9] ISO/TS 12781-2:2003. Geometrical Product Specifications (GPS) – Flatness - Part 1: Vocabulary and parameters of flatness

DOI: 10.3403/30198165

Google Scholar

[10] M.H. Attia, S. Fraser.: A Generalised Modelling Methodology for Optimised Real-Time Compensation of Thermal Deformation of Machine Tools and CMM Structures. Int. Journal of Machine Tools and Manufacture, Vol. 39 (1999), 1001-1016

DOI: 10.1016/s0890-6955(98)00063-7

Google Scholar

[11] M. Dyck: Beitrag zur Analyse thermisch bedingter Werkstückdeformationen in Trockenbearbeitungsprozessen. Dissertation, Universität Karlsruhe (2007)

Google Scholar