Finite Element Modeling of Microstructural Changes in Hard Turning

Article Preview

Abstract:

The material grain size changes significantly during machining of hardened steels, and this must be taken into account for improved modeling of surface integrity effects resulting from machining. Grain size changes induced during orthogonal cutting of hardened AISI 52100 (62 HRC) are modeled using the Finite Element (FE) method; in particular, a user subroutine involving a hardness-based flow stress model is implemented in the FE code and empirical models are utilized for describing the phase transformation conditions to simulate formation of white and dark layers. Furthermore, a procedure utilizing the Zener-Hollomon relationship is implemented in the above-mentioned user subroutine to predict the evolution in material grain size at different cutting speeds (300, 600, 900 SFPM). All simulations were performed for dry cutting conditions using a low CBN-content insert (Kennametal KD050 grade, ANSI TNG-432 geometry). The model is validated by comparing the predicted results with experimental evidence available in the literature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

960-968

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shaw M.C., Vyas A. Heat-Affected Zones in Grinding Steel, Annals of CIRP, Vol. 43(1) (1994) pp.279-282.

DOI: 10.1016/s0007-8506(07)62213-6

Google Scholar

[2] Umbrello D., Filice L. Improving Surface Integrity in Orthogonal Machining of Hardened AISI 52100 Steel by Modeling White and Dark Layers Formation, Annals of CIRP, Vol. 58(1) (2009) pp.73-76.

DOI: 10.1016/j.cirp.2009.03.106

Google Scholar

[3] Busso P., A continuum theory for dynamic recrystallization with microstructure related length scales, International Journal of Plasticity, Vol. 14, Nos 4-5 (1998), pp.319-353.

DOI: 10.1016/s0749-6419(98)00008-4

Google Scholar

[4] Chen L., Wang Y., The continuum field approach to modeling microstructure evolution, JOM; Vol. 48, 12 (1996), ABI/INFORM Trade & Industry, pg. 13.

Google Scholar

[5] Doherty R.D., Hughes D.A., Humphreys F.J., Jonas J.J., Juul Jensen D., Kassner M.E., King W.E., McNelley T.R., McQueen H.J., Rollett A.D., Current issues in recrystallization: a review, Materials Science and Engineering A238 (1997) 219–274.

DOI: 10.1016/s0921-5093(97)00424-3

Google Scholar

[6] Glowacki M., Kuziak R., Malinowski Z. and Pietrzyk M., Modelling of heat transfer, plastic flow and microstructural evolution during shape rolling, Journal of Materials Processing Technology Vol. 53 (1995) pp.159-166.

DOI: 10.1016/0924-0136(95)01972-h

Google Scholar

[7] Qu J., Jin Q.L., Xu B.Y., Parameter identi-fication for improved viscoplastic model considering dynamic recrystallization, International Journal of Plasticity 21 (2005) 1267–1302.

DOI: 10.1016/j.ijplas.2004.04.009

Google Scholar

[8] Sellars C.M., Zhu Q., Microstructural modeling of aluminium alloys during ther-momechanical processing, Materials Science and Engineering Vol. A280 (2000) p.1–7.

Google Scholar

[9] Swaminathan S., Ravi Shankar M., Lee S., Hwang J., King A. H., Kezar R. F., Raoa B. C., Browna T. L., Chandrasekar S., Dale Compton W., Trumble K. P., Large strain deformation and ultra-fine grained materials by machining, Materials Science and Engineering Vol. A 410–411 (2005).

DOI: 10.1016/j.msea.2005.08.139

Google Scholar

[10] G. Poulachon, A. Albert, M. Schluraff, I.S. Jawahir, An experimental investigation of work material microstructure effects on white layer formation in PCBN hard turn-ing, International Journal of Machine Tools & Manufacture Vol. 45 (2005).

DOI: 10.1016/j.ijmachtools.2004.07.009

Google Scholar

[11] Ramesh A., Melkote S.N., Analysis of white layers formed in hard turning of AISI 52100 steel, Materials Science and Engineering Vol. A390 (2005) p.88–97.

DOI: 10.1016/j.msea.2004.08.052

Google Scholar

[12] Tomlinson W.J., Blunt L.A., Spraggett S. White Layers on Surface of Ground EN24 Steel. 1. Microstructure, Composition, Internal Stress, and Corrosion Properties, Surface Engineering, Vol. 5(3) (1989) pp.229-233.

DOI: 10.1179/sur.1989.5.3.229

Google Scholar

[13] Umbrello, D. 2010, Influence of Material Microstructure Changes on Surface Integ-rity in Hard Machining of AISI 52100 Steel, in press on Int. J. Adv. Manuf. Technol., (DOI: 10. 1007/s00170-010-3003-x).

DOI: 10.1007/s00170-010-3003-x

Google Scholar

[14] Yanagimoto J., Karhausen K., Incremental Formulation for the Prediction of Flow Stress and Microstructural Change in Hot Forming, Journal of manufacturing science and engineering, Vol. 120 2 (1998).

DOI: 10.1115/1.2830129

Google Scholar