Size Estimation of Tomato Fruits Based on Spectroscopic Analysis

Article Preview

Abstract:

This study used visible and near-infrared (VIS-NIR) spectroscopy for size estimation of tomato fruits of three cultivars. A mobile, fibre-type, VIS-NIR spectrophotometer (AgroSpec, Tec 5, Germany) with spectral range of 350-2200 nm, was used to measure reflectance spectra of on-vine tomatoes growing from July to September 2010. Spectra were divided into a calibration set (75%) and an independent validation set (25%). A partial least squares regression (PLSR) with leave-one-out cross validation was adopted to establish calibration models between fruit diameter and spectra. Furthermore, the latent variables (LVs) obtained from PLS regression was used as input to back-propagation artificial neural network (BPANN) analysis. Result shows that the prediction of PLSR model can produce good performance with coefficient of determination (R2) of 0.82, root-mean-square error of prediction (RMSEP) of 4.87 mm and residual prediction deviation (RPD) of 2.35. Compared to the PLSR model, the PLS-BPANN model provides considerably higher prediction performance with R2 of 0.88, RMSEP of 3.98 mm and RPD of 2.89. It is concluded that VIS-NIR spectroscopy coupled with PLS-BPANN can be adopted successfully for size estimation of tomato fruits.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 225-226)

Pages:

1254-1257

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Blasco, N. Aleixos, and E. Moltó: Biosystems Engineering Vol. 85 (2003), p.415.

Google Scholar

[2] J.W. von Beckmann, and N.R. Bulley: Transaction of the ASAE Vol. 23 (1980), p.1489.

Google Scholar

[3] W. Spreer, and J. Müller: Computers and Electronics in Agriculture Vol. 75 (2011), p.125.

Google Scholar

[4] E. Fitz-Rodríguez, and G.A. Giacomelli: Transactions of the ASABE Vol. 52 (2009), p.2115.

Google Scholar

[5] S.D. Tanksley: Plant Cell Vol. 16 (2004), p. S181.

Google Scholar

[6] J.W. Macarthur, and L. Butler: Genetics Vol. 23 (1938), p.253.

Google Scholar

[7] E. Nilsson: Hereditas Vol. 49 (1963), p.237.

Google Scholar

[8] J.W. von Beckmann, and N.R. Bulley: Transactions of the ASABE Vol. 21 (1978), p.25.

Google Scholar

[9] S.K. Upadhyaya, M.S. Shafii, and L.O. Garciano, Development of an impact type electronic weighing system for processing tomatoes, in 2006 ASAE Annual Meeting (American Society of Agricultural and Biological Engineers, St. Joseph, Michigan 49085, 2006).

DOI: 10.13031/2013.21095

Google Scholar

[10] V. Leemans, H. Magein, and M.F. Destain: Biosystems Engineering Vol. 83 (2002), p.397.

DOI: 10.1006/bioe.2002.0131

Google Scholar

[11] G.P. Moreda, J. Ortiz-Cañavate, F.J. García-Ramos, and M. Ruiz-Altisent: Journal of Food Engineering Vol. 81 (2007), p.388.

DOI: 10.1016/j.jfoodeng.2006.11.013

Google Scholar

[12] V.G. Narendra, and K.S. Hareesh: International Journal of Computer Applications Vol. 2 (2010), p.43.

Google Scholar

[13] N. Kondo: Trends in Food Science & Technology Vol. 21 (2010), p.145.

Google Scholar

[14] D.J. Lee, R. Schoenberger, J. Archibald, and S. McCollum: Journal of Food Engineering Vol. 86 (2008), p.388.

Google Scholar

[15] H. Yang, B. Kuang, and A. M. Mouazen: Advanced Materials Research Vol. 181-182 (2011), p.416.

Google Scholar

[16] H. Yang, B. Kuang, and A. M. Mouazen: Key Engineering Materials Vol. 467-469 (2011), p.725.

Google Scholar

[17] H. Yang, and G. Lv: Advanced Materials Research Vol. 181-182 (2011), p.272.

Google Scholar

[18] A.M.K. Pedro, and M.M.C. Ferreira: Analytica Chimica Acta Vol. 595 (2007), p.221.

Google Scholar

[19] K. Flores, M.T. Sánchez, D. Pérez-Marín, J.E. Guerrero, and A. Garrido-Varo: Journal of Food Engineering Vol. 91 (2009), p.311.

Google Scholar

[20] A. Clément, M. Dorais, and M. Vernon: J Agr Food Chem Vol. 56 (2008), p.1538.

Google Scholar

[21] L.M.M. Tijskens, and R.G. Evelo: Postharvest Biology and Technology Vol. 4 (1994), p.85.

Google Scholar

[22] R.E. Schouten, T.P.M. Huijben, L.M.M. Tijskens, and O. van Kooten: Postharvest Biology and Technology Vol. 45 (2007), p.298.

DOI: 10.1016/j.postharvbio.2007.03.011

Google Scholar

[23] R. Arias, T.C. Lee, L. Logendra, and H. Janes: J Agr Food Chem Vol. 48 (2000), p.1697.

Google Scholar

[24] L. Helyes, Z. Pek, and A. Lugasi: Hortscience Vol. 41 (2006), p.1400.

Google Scholar

[25] V. Fernández-Ruiz, J.S. Torrecilla, M. Cámara, M.C. Sánchez Mata, and C. Shoemaker: Talanta Vol. 83 (2010), p.9.

Google Scholar