[1]
Liberzon D. Switching in Systems and Control(Boston: Birkhauser Publications, 2003).
Google Scholar
[2]
K. Yuan, J. Cao, and H.X. Li. Robust stability of switched Cohen–Grossberg neural networks with mixed time-varying delays. IEEE Trans. Syst., Man Cybern. B, Cybern. vol. 36(2003, ): 1356– 1363.
DOI: 10.1109/tsmcb.2006.876819
Google Scholar
[3]
H. Huang, Y. Qu, and H. -X. Li. Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty. Phys. Lett. A, vol 345(2005): 345–354.
DOI: 10.1016/j.physleta.2005.07.042
Google Scholar
[5]
Z. -H. Guan, D. J. Hill, and X. Shen. On hybrid impulsive and switching systems and applic- ation to nonlinear control. IEEE Trans. Autom. Control, vol. 50(2005): 1058–1062.
DOI: 10.1109/tac.2005.851462
Google Scholar
[6]
Zhang Qimin, Liu Wenan and Nie Zankan, Existence,uniqueness and exponential stability for stochastic age-dependent population. Applied Mathematics and Computation vol. 154(2004): 183-201.
DOI: 10.1016/s0096-3003(03)00702-1
Google Scholar
[7]
Mao X.R., Environmental Brownian noise suppresses explosions in population dynamics. Stoch astic Processes and Their Applications. vol. 97(2002): 95-110.
DOI: 10.1016/s0304-4149(01)00126-0
Google Scholar
[8]
Wu S.J. , Han D., Meng X.Z., p-Monent stability of stochastic differential equations with jumps. Applied Mathematics and Computation . vol. 52(2004): 505-519.
DOI: 10.1016/s0096-3003(03)00573-3
Google Scholar
[9]
Ya-Jun Li, Fei-Qi Deng. Exponential Stability and H∞ Performance for a Class of uncertain impulsive stochastic systems . Proceedings of the Eighth inter - national Conference on Machine Learning and Cybern etics, Baoding, 2009, 3667-3772.
DOI: 10.1109/icmlc.2009.5212723
Google Scholar
[10]
Zhiguo Yang and Daoyi Xu. Mean square exponential stability of impulsive stochastic difference equations. Applied Mathematics Letters. vol. 20(2007): 938-945.
DOI: 10.1016/j.aml.2006.09.006
Google Scholar
[11]
Quanxin Zhu and Jinde Cao. Robust Exponential Stability of Markovian Jump Impulsive Stochastic Cohen–Grossberg Neural Networks with Mixed Time Delays. IEEE Transaction on Neural Networks. vol. 21(2010): 1314-1325.
DOI: 10.1109/tnn.2010.2054108
Google Scholar
[12]
C. Huang and J. Cao. On pth moment exponential stability of stochastic Cohen–Grossberg neural net- works with time-varying delays. Neurocomputing. vol. 73(2010): 986–990.
DOI: 10.1016/j.neucom.2009.08.019
Google Scholar
[13]
Lirong Huang, Xuerong Mao. On almost sure stability of hybrid stochastic systems with mode- dependent interval delays. Automatic Control, IEEE Transactions on Automatic Control. vol. 55 (2010): 1946-(1952).
DOI: 10.1109/tac.2010.2050160
Google Scholar