[1]
K. Zhou and P.P. Khargonekar. An algebraic Riccati equation approach to optimization. Syst Control Letter , Vol. 11(1988), 85–91.
DOI: 10.1016/0167-6911(88)90080-1
Google Scholar
[2]
S. Boyd , L.E. Ghaoui, E. Feron. V. Balakrishnan, Linear matrix inequality in systems and control theory, SIAM studies in Applied Mathematics. SIAM, Philadelphia (1994).
DOI: 10.1137/1037119
Google Scholar
[3]
S.H. Song and J.K. Kim. control of discrete-time linear systems with norm-bounded uncertainties and time delay in state. Automatica , Vol. 34(1998), 137–9.
DOI: 10.1016/s0005-1098(97)00182-9
Google Scholar
[4]
F. Amato, M. Ariola, and P. Dorato. Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica, Vol. 37 (2001), 1459-1463.
DOI: 10.1016/s0005-1098(01)00087-5
Google Scholar
[5]
L. Weiss and E.F. Infante. Finite time stability under perturbing forces and on product spaces. IEEE Transactions on Automatic Control, Vol. 12 (1967), 54-59.
DOI: 10.1109/tac.1967.1098483
Google Scholar
[6]
F. Amato and M. Ariola. Finite-Time Control of Discrete-Time Linear Systems. IEEE Transactions on Automatic Control, Vol. 50 (2005), 724-729.
DOI: 10.1109/tac.2005.847042
Google Scholar
[7]
D.Y. Xin and Y.G. Liu. Finite-time stability analysis and control design of nonlinear systems. Journal of Shandong Universituy, Vol. 37 (2007), 24-30.
Google Scholar
[8]
F. Amato, R. Ambrosinob, M. Ariola, C. Cosentino. Finite-time stability of linear time-varying systems with jumps. Automatica, Vol. 45(2009), 1354-1358.
DOI: 10.1016/j.automatica.2008.12.016
Google Scholar
[10]
Q.Y. Meng and Y. J Shen, Finite-time control for linear continuous system with norm-bounded disturbance. Commun Nonlinear Aci Numer Simulat., Vol. 14(2009), 1043-1049.
Google Scholar
[11]
K. Tanaka, T. Ikeda, et al. Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-Based Designs. IEEE Trans. Fuzzy Syst., Vol. 6(1998), 250-265.
DOI: 10.1109/91.669023
Google Scholar
[12]
E. Kim and H. Lee. New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst., Vol. 8 (2000), 523-534.
DOI: 10.1109/91.873576
Google Scholar