On Adaptive Synchronization in Complex Networks

Article Preview

Abstract:

The pinning adaptive synchronization of a class of weighted complex networks is investigated in detail and several criteria are obtained for locally exponentially asymptotic synchronization. The detailed number of pinned nodes to achieve network synchronization can be estimated by calculating the eigenvalue of the minor matrix of extended coupling matrix. Compared with the general adaptive controllers, the convergence speed of the proposed pinning adaptive controllers is greatly enhanced by an adjustable parameter.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 225-226)

Pages:

449-452

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Albert R. and Barabási A. -L., Statistical mechanics of complex networks, Rev. Mod. Phys., Vol. 74(1), (2002), p.47–97.

DOI: 10.1103/revmodphys.74.47

Google Scholar

[2] Wang X. and G. Chen, Complex networks: Small-world, scale-free and beyond, " IEEE Circuits Syst. Mag., Vol. 3(1), (2003), p.6–20.

DOI: 10.1109/mcas.2003.1228503

Google Scholar

[3] LüJ., Chen G., A time-varying complex dynamical network model and its controlled synchronization criteria, IEEE Trans. Autom. Control, Vol. 50(6), (2005), p.841–846.

DOI: 10.1109/tac.2005.849233

Google Scholar

[4] LüJ., X. Yu, Chen G., Cheng D., Characterizing the synchronizability of small-world dynamical networks, IEEE Trans. Circuits Syst. I, Vol. 51(4), (2004), p.787–796.

DOI: 10.1109/tcsi.2004.823672

Google Scholar

[5] Lü J., Yu X., Chen G., Chaos synchronization of general complex dynamical networks, Physica A , Vol. 334(1-2), (2004), p.281–302.

DOI: 10.1016/j.physa.2003.10.052

Google Scholar

[6] Pecora, L. M., Carroll, T. L. Synchronization in chaotic systems. Physical Review Letters, Vol. 64(8), (1990), p.821–824.

DOI: 10.1103/physrevlett.64.821

Google Scholar

[7] Newman, M., Barabási, A. L., Watts, D. J. The structure and dynamics of networks. Princeton, NJ, USA: Princeton University Press, (2006).

Google Scholar

[8] Strogatz, S. H. Exploring complex networks. Nature, Vol. 410(6825), (2001), p.268–276.

DOI: 10.1038/35065725

Google Scholar

[9] Yu W., Chen G., Lü J. On pinning synchronization of complex dynamical networks. Automatica, Vol. 45, (2009), pp.429-435.

DOI: 10.1016/j.automatica.2008.07.016

Google Scholar

[10] Zhou, J., Lu, J., Lü, J. Adaptive synchronization of an uncertain complex dynamical network. IEEE Transactions on Automatic Control, Vol. 51(4), (2006), pp.652-656.

DOI: 10.1109/tac.2006.872760

Google Scholar

[11] Zhou J, Lu J A, Lü J H. Pinning adaptive synchronization of a general complex dynamical network. Automatica, Vol. 44(4), (2008), pp.996-1003.

DOI: 10.1016/j.automatica.2007.08.016

Google Scholar