Efficient Associative Memory Based on a Nonlinear Function Constitution and Dynamic Synapses

Article Preview

Abstract:

Nonlinear function constitution and dynamic synapses, against spurious state for Hopfield neural network are proposed. The model of the dynamical connection weight and the updating scheme of the states of neurons are given. Nonlinear function constitution improves the conventional Hebbian learning rule with linear outer product method. Simulation results show that both nonlinear function constitution and dynamic synapses can effectively increase the ability of error tolerance; furthermore, associative memory of neural network with the new method can both enlarge attractive basin and increase storage capacity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 225-226)

Pages:

479-482

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.J. Hopfield, neural networks and physical systems with emergent collective computation abilities, Proc. Nat. Acad. sci., USA Vol. 79 (1982), pp.2445-2558.

DOI: 10.1073/pnas.79.8.2554

Google Scholar

[2] O. Masato, Notions of associative memory and sparse coding, Neural Networks, Vol. 9 (1996), pp.1429-1458.

DOI: 10.1016/s0893-6080(96)00044-5

Google Scholar

[3] R. S. Armen, et al, A model synapse that incorporates properties of short- and long-term synaptic plasticity, Neural Networks Vol. 16 (2003), pp.1161-1177.

DOI: 10.1016/s0893-6080(03)00135-7

Google Scholar

[4] L F. Abbott, J.A. Varela, K. Sen, et a1., Synaptic Depression and Cortical Gain Control, Science, Vol. 275 (1997), pp.220-224.

DOI: 10.1126/science.275.5297.221

Google Scholar

[5] W. M. Kistler, Short-term Synaptic Plasticity and Network Behavior, Neural Computation Vol. 11(1999), pp.1579-1594.

DOI: 10.1162/089976699300016151

Google Scholar

[6] L. Abbott, W. G. Regehr, Synaptic computation, Nature Vol. 431 (2004), pp.796-803.

DOI: 10.1038/nature03010

Google Scholar

[7] A. Gruart, M.D. Muniz, Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice, Journal of Neuroscience Vol. 26 (2006), pp.1077-1087.

DOI: 10.1523/jneurosci.2834-05.2006

Google Scholar

[8] M.V. Tsodyks, H. Markram, The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability, Proc. Natl. Acad. Sci. USA Vol. 94 (1997), pp.719-723.

DOI: 10.1073/pnas.94.2.719

Google Scholar

[9] L. Pantic, J.J. Torres, and H.J. Kappen, Associative memory with dynamic synapses, Neural Computation Vol. 14 (2002), pp.2903-2923.

DOI: 10.1162/089976602760805331

Google Scholar