A Review of the Laser Pyrolysis Technique Used to Synthesize Vanadium and Tungsten Oxide Thin Films

Article Preview

Abstract:

Laser pyrolysis is one of the most important and emerging techniques used to synthesize thin films, nano-powders and nano-structured materials. The advantages in this technique include: a well defined interaction volume, no interactions with the reactor chamber walls hence less impurities, and the attainment of very fine particles. In this paper we briefly review the development and the current status of laser pyrolysis world wide. However, the main focus is an overview of our efforts to synthesize vanadium and tungsten oxides using this technique since 2006. We discuss the role of the laser pyrolysis parameters: the beam waist, interaction volume, carrier gas flow rates, laser wavelength and power density on the phase, size and shape of the final products obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-83

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. R. Bachmann, H. Noth, R. Rinck, K. S. Kompa: Chem. Phys. Lett. Vol. 29 (1975), p.627.

Google Scholar

[2] K. E. Lewis, D. M. Golden and G. P. Smith: J. Am. Chem. SOC. Vol. 106 (1984), p.3905.

Google Scholar

[3] R. Alexandrescu, I. Morjan, I. Voicu, F. Dumitrache, I. Sandu, M. Savoiu, C. Fleaca and R. Piticescu: Nanotechnology Vol. 15 (2004), p.537.

DOI: 10.1088/0957-4484/15/5/023

Google Scholar

[4] S. Martelli, O. Bomati-Miguel, L. De Dominics, R. Giorgi, F. Rinaldi and S. Veintemillas- Verdaguer: Appl. Surf Scien. Vol. 186 (2002), p.562.

Google Scholar

[5] E. Popovici , F. Dumitrache, I. Morjan, R. Alexandrescu,V. Ciupina , G. Prodan, L. Vekas, D. Bica,O. Marinica, E. Vasile : Appl. Surf. Scien. Vol. 254 (2007), p.1048.

DOI: 10.1016/j.apsusc.2007.09.022

Google Scholar

[6] B.W. Mwakikunga, E. Sideras-Haddad, A. Forbes, and C. Arendse: Phys. Stat. Sol. (a) Vol. 205 (2008), p.150.

Google Scholar

[7] B.W. Mwakikunga, A. Forbes, E. Sideras-Haddad, R.M. Erasmus, G. Katumba, and B. Masina: Int.J. Nanoparticles, Vol. 1, No. 3 (2008).

Google Scholar

[8] W. J. Lee: J. Elect. Mat Vol. 29 (2006) , p.183.

Google Scholar

[9] R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman and R. F. Haglund, Jr.: J. Appl Phys., Vol. 92, No. 7, (2002).

Google Scholar

[10] J. Nag and R.F. Haglund Jr: J. Phys. Condens. Matter 20, (2008), p.264016.

Google Scholar

[11] K. Blind and S. Gauch: J. Technol. Transf. Vol. 34 (2009), p.320.

Google Scholar

[12] R. N. Kostoff, R. G. Koytcheff and C. G.Y. Lau: Technological Forecasting & Social Change Vol. 74 (2007), p.1733.

DOI: 10.1016/j.techfore.2007.04.004

Google Scholar

[13] Y.L. Wang, M.C. Li and L.C. Zhao: Rare Met. Mater. Eng. Vol. 7 (2005), p.1077.

Google Scholar

[14] Z.O. Crnjak and I. Musevic: Nanostrct. Mater. Vol. 399, (1999).

Google Scholar

[15] M.D. Negra, M. Sambi and G. Granozzi: Surf. Sci. Vol. 494 (2001), p.213.

Google Scholar

[16] D.H. Kim and H.S. Kwok : Appl. Phys. Lett. Vol. 65 (1994), p.3188.

Google Scholar

[17] D. Vernardou, M.E. Pemble and D. W Scheel: Chem. Vap. Deposit. Vol. 12 (2006), p.263.

Google Scholar

[18] J.S. Haggerty, and W.R. Cannon, in : J. I Steinfield (Ed), Laser Induced Chemical processes, Plenum Press, New York, p.165, (1981).

Google Scholar

[19] G. Ledoux, D. Amans , J. Gong, F. Huisken, F. Cichos and J. Martin: Mater. Scien. and Engin. C Vol. 19 (2002), p.215.

Google Scholar

[20] E. Figgemeier, W. Kylberg, E. Constable, M. Scarisoreanu, R. Alexandrescu, I. Morjan, I. Soare, R. Birjega, E. Popovici, C. Fleaca, L. Gavrila-Florescu and G. Profan: Appl. Surf. Scien. Vol. 254 (2007), p.1037.

DOI: 10.1016/j.apsusc.2007.08.036

Google Scholar

[21] D. Pokorna, J. Bohacek, V. Vorlicek, J. Subrt, Z. Bastl, E. A. Volnina and J. Pola: J. Anal. Appl. Pyrolysis Vol. 75 (2006), p.65.

Google Scholar

[22] O. Sublemontier, F. Lacour, Y. Leconte, N. Herlin-Boime and C. Reynaud: J. Alloys Compd Vol. 483 (2008), p.499.

DOI: 10.1016/j.jallcom.2008.07.233

Google Scholar

[23] H. Maskrot, N. Herlin-Boime1, Y. Leconte, K. Jursikova, C. Reynaud1 and J. Vicens: J. Nanoparticle Res. Vol. 8 (2006) , p.351.

DOI: 10.1007/s11051-005-9016-y

Google Scholar

[24] G. Peters, K. Jerg, and B. Schramm: Materials: Chemisrty and Physics Vol. 55 (1998), p.197.

Google Scholar

[25] A. Galvez, N. Herlin-Boime, C. Reynaud, C. Clinard and J. Rouzaud: Carbon Vol. 40 (2002), p.2775.

DOI: 10.1016/s0008-6223(02)00195-1

Google Scholar

[26] J. Förster, M. von Hoesslin and J. Uhlenbusch: Appl. Phys. B Vol. 62 (1996), p.609.

Google Scholar

[27] B. W. Mwakikunga, A. Forbes, E. Sideras-Haddad and C. Arendse: Nanoscale Res Lett Vol. 3 (2008), p.372.

Google Scholar

[28] B. W Mwakikunga, E. Sideras-Haddad, C Arendse, M. J. Witcomb and A. Forbes: J. Nanosci. & Nanotechnol. Vol. 9 (2009), p.3286.

DOI: 10.1166/jnn.2009.vc12

Google Scholar