Methods to Reduce Thermal Conductivity Further of Plasma Sprayed Thermal Barrier Coatings

Article Preview

Abstract:

This paper reviews the theory of thermal conduction of ceramic materials with the aim to reduce further the thermal conductivity of plasma sprayed thermal barrier coatings. Methods of reducing thermal conductivity of plasma sprayed thermal barrier coatings including seeking for alternative ceramic materials to 8YSZ, addition of some dopants, preparing nanostructured coating and double-ceramic-layer coating are advised. It is indicated that the combination of colouring plus nanostructured and double-ceramic-layer coating of new ceramic candidate materials of lower thermal conductivity should be an very important research direction in future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 230-232)

Pages:

49-53

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. P. Padture, M. Gell, E. H. Jordan: Sci. Vol 296 (2002), p.280.

Google Scholar

[2] D. Stover, G. Pracht, H. Lehmann, et al: J. Thermal Spray Technol. Vol. 13 (2004). p.76.

Google Scholar

[3] J. R. Nicholls, K. J. Lawson, A. Johnstone, et al: Surf. Coat. Technol. Vol. 151 (2002). p.383.

Google Scholar

[4] H. Lehmann, D. Pitzer, G. Pracht, et al: J. Amer. Ceram. Soc. Vol. 86 (2003), p.1338.

Google Scholar

[5] G. A. Stack: Solid State Phy. Vol. 34 (1979), p.1.

Google Scholar

[6] R. Sivakumar, M. P. Srivastava: Oxidation of Metals. Vol. 20 (1983), p.67.

Google Scholar

[7] M. R. Winter, D. R. Clarke: J. Amer. Ceram. Soc. Vol. 90 (2007), p.533.

Google Scholar

[8] P. G. Klemens, M. Gell: Mater. Sci. Eng A. Vol. 245 (1998), p.143.

Google Scholar

[9] K. Kurosaki,T. Tanaka, T. Maekawa, et al: J. Alloy. Compds. Vol. 395 (2005), p.318.

Google Scholar

[10] J. Wu, X. Z. Xue, N. P. Padture, et al: J. Amer. Ceram. Soc. Vo, l. 85 (2002), p.3031.

Google Scholar

[11] X. Q. Cao, R. Vassen, D. Stoever: J. Europ. Ceram. Soc. Vol. 24 (2004), p.1.

Google Scholar

[12] L. Z. Guo, J. H. Ouyang, Z. Yu: J. Mater. Sci. Vol. 43 (2008), p.3596.

Google Scholar

[13] Z. H. Ming, Y. D. Qing: J. Rare Earths. Vol. 26 (2008), p.770.

Google Scholar

[14] Z. H. Song, S. Kun, X. Qiang, et al: J. Rare Earth. Vol. 27 (2009), p.222.

Google Scholar

[15] Z. H. Song, L. Z. Jun, X. Qiang, et al. Transactions. Mater. Heat Treatment. Vol. 6 (2008), p.163 (in chinese).

Google Scholar

[16] M. Matsumoto, K. Aoyama, H. Matsubara, et al: Surf. Coat. Technol. Vol. 104 (2005), p.31.

Google Scholar

[17] S. Raghavan, H. Wang, R. B. Dinwiddie, et al: J. Amer. Ceram. Soc. Vol. 87 (2004), p.431.

Google Scholar

[18] K. A. Khor, J. Yang: Surf. Coat. Technol. Vol. 96 (1997), p.313.

Google Scholar

[19] D. R. Clark, C. G. Levi: Annu. Rev. Mater. Res. Vol. 33 (2003), p.383.

Google Scholar

[20] C. G. Zhou, N. Wang, Z. B. Wang, et al. Scripta. Mater. Vol. 51 (2004), p.945.

Google Scholar

[21] W. B. Gong, C. K. Sha, D. Q. Sun, et al: Surf. Coat. Technol. Vol. 201 (2006), p.3109.

Google Scholar

[22] M. Tamura, M. Takahashi, J. Ishii, et al: J. Thermal. Spray. Technol. Vol. 8 (1999), p.68.

Google Scholar

[23] R. M. Leckie, S. Kramer, M. Ruhle, et al: Acta. Mater. Vol. 53 (2005), p.3291.

Google Scholar

[24] X. Q. Cao, R. Vassen, F. Tietz, et al: J. Europ. Ceram. Soc. Vol. 26 (2006), p.247.

Google Scholar

[25] H. Dai, X. H. Zhong, J. Y. Li, et al: Mater. Sci. Eng A. Vol. 433 (2006), p.1.

Google Scholar

[26] Y. J. Su, R. W. Trice, K. T. Faber, et al: Oxidation of Metals. Vol 61 (2004), p.253.

Google Scholar