Deep Determination of Top Value-Added Constituents of Phoenix Tree Leaves by GC/MS

Article Preview

Abstract:

In order to separate top value-added bioactive components from waste leaves of Phoenix tree and hence decrease its pollution to water environment, we attempted to analyze the chemical components of benzene/ethanol extractive of Phoenix leaves by means of GC/MS. Relative content of each component was determined by area normalization, and 10 compounds representing 94.37 % of the extractives were identified. The most abundant constituents were as: Ethanol, 2-butoxy- (47.49% from two peaks), exanoic acid, ethyl ester (22.89%), 1-Butyne, 3-chloro- (17.04%), Bicyclo[3.1.1]heptane, 2,6,6-trimethyl- (3.17%), cis-2,3,5-Trimethoxy-.beta.-methyl- (2.91%), Cyclohexanone, 3-hydroxy- (2.20%), 2,5-Cyclohexadien-1-one, 2,5-dimethyl- (1.35% from two peaks), cis-11-Hexadecen-1-yl acetate (1.04%), Octadecane (1.00%), etc. As the first report here, our result by GC/MS showed that the benzene-methanol extractive of freeze-dried Phoenix leaves can be developed into top value-added materials of medicines, biofuel and solvents.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 230-232)

Pages:

862-866

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Q. Wang, S.B. Wu, and X.L. Zhu: Transact. of China Pulp and Paper, Vol. 20 (2005), pp.178-181.

Google Scholar

[2] B.K. Singh, and K. Tate: FEMS Microbiol. Lett. Vol. 275 (2007), pp.89-93.

Google Scholar

[3] M. Demir, E. Makineci, and E. Yilmaz: J. Environ. Biol. Vol. 28 (2007), pp.427-432.

Google Scholar

[4] N. Fukagawa, G. Meshitsuka, and A. Ishizu: J. Wood Chem. Technol., Vol. 12 (1992), pp.425-429.

Google Scholar

[5] L.D. Emberson, P. Büker, and M.R. Ashmore: Environ. Pollut. Vol. 147 (2007), pp.454-458.

Google Scholar

[6] K. Fackler, M. Schwanninger, C. Gradinger, B. Hinterstoisser, and K. Messner: FEMS Microbiol. Lett. Vol. 271(2007), pp.162-166.

Google Scholar

[7] K. Herbinger, C. Then, K. Haberer, M. Alexou, M. Law, K. Remele, H. Rennenberg, R. Matyssek, D. Grill, G. Wieser, and M. Tausz: Plant Biol. (Stuttg) Vol. 9 (2007), pp.288-293.

DOI: 10.1055/s-2006-924660

Google Scholar

[8] B.Y. Lu, A. Merlin, P. Perre, L. Chrusciel, and D.G. Zhou: Journal of Nanjing Forestry University (Natural Sciences Edition). Vol. 31 (2007), pp.1-6.

Google Scholar

[9] D. Reyes, D. Rodríguez, M.P. González–García, O. Lorenzo, G. Nicolás, J.L. García–Martínez, and C. Nicolás: Plant Physiol. Vol. 141 (2006), pp.1414-1427.

Google Scholar

[10] T. Grebenc, and H. Kraigher: Environ. Monit. Assess Vol. 128 (2007), pp.47-52.

Google Scholar

[11] P. Miao, S.Z. Zhuang, Z.X. Zhu, and G.X. Shen: China Wood–Based Panels Vol. (2006), pp.12-18.

Google Scholar

[12] A. Tufekcioglu, S. Guner, and M. Kucuk: J. Environ. Biol. Vol. 25 (2004), pp.317-321.

Google Scholar

[13] M. Ferretti, M. Calderisi, and F. Bussotti: Environ. Pollut. Vol. 145 (2007), pp.644-649.

Google Scholar

[14] K. Yoshida, J. Kusaki, K. Ehara, and S. Saka: Appl. Biochem. Biotechnol. Vol. 121 (2005), pp.795-799.

Google Scholar

[15] Z. Xia, T. Yoshida, and M. Funaoka: Biotechnol. Lett. Vol. 25 (2003), pp.9-16.

Google Scholar

[16] B.C. Wang: J. Zhejiang Sci. tech. Vol. 24 (2004), pp.41-45.

Google Scholar

[17] R.M. Gong, and L. Yang: China Forest Products Industry. Vol. 30 (2003), pp.19-23.

Google Scholar

[18] M.A. Shao, Z.P. Shangguan, and J. Dyckmans: Acta Pedologica. Sinica Vol. 37 (2000), pp.549-552.

Google Scholar

[19] D.Y. Chen: China Forest Products Industry Vol. 27 (2000), pp.23-27.

Google Scholar

[20] Z. Song, J.X. You, H. Yu, and K. Lu: China Forest Products Industry Vol. 28 (2001), pp.28-32.

Google Scholar

[21] A. Tufekcioglu, S. Guner, and F. Tilki: J. Environ. Biol. Vol. 26 (2005), pp.91-96.

Google Scholar

[22] A. Yasuhara, T. Katami, and T. Shibamoto: Environ. Sci. Technol. Vol. 37 (2003), pp.1563-1567.

Google Scholar

[23] C.L. Chan, E.J. Lien, and Z.A. Tokes: J. Med. Chem. Vol. 30 (1987), pp.509-514.

Google Scholar

[24] Y. Román–Leshkov, J. N. Chheda, and J. A. Dumesic: Science Vol. 312 (2006), p.1933-(1936).

Google Scholar

[25] H. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang: Science Vol. 316 (2007), pp.1597-1599.

Google Scholar

[26] B. Schink, J.C. Ward, and J.G. Zeikus: Appl. Environ. Microbiol. Vol. 42 (198), p.: 526-531.

Google Scholar

[27] Y.X. Xie, Y. Zhu, and Q.H. Zhao: Journal of Chinese Mass Spectrometry Society Vol. 21 (2001), pp.99-103.

Google Scholar

[28] Y. Román–Leshkov, C. J. Barrett, Z. Y. Liu, and J. A. Dumesic: Nature Vol. 447 (2007), pp.982-984.

Google Scholar