The Effects of PW/SiO2 Activation Temperature on Friedel-Crafts Acylation of Toluene with Acetic Anhydride

Article Preview

Abstract:

The effects of PW/SiO2 activation temperature on MPA (p-methoxyacetophenone) synthesis from toluene and acetic anhydride were carefully studied, and catalysts were carefully characterized by BET and XRD. The charactrerized results displayed that the interaction between PW and SiO2 promoted the loss of acidic protons from PW to form the weak acid PW12O38.5 over PW/SiO2. The weak acid site PW12O38.5 over PW/SiO2 came into being when activation temperature increased to 300 °C, and the appearance of PW12O38.5 over PW/SiO2 resulted in MPA yield decline.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

1464-1467

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Olah, Friedel-Crafts and Related Reactions, vols. I-IV, Wiley-Interscience, New York, 1963–1964; G.A. Olah, in: Friedel–Crafts and Related Reactions, Wiley-Interscience, New York, 1973.

DOI: 10.1126/science.145.3637.1174.b

Google Scholar

[2] P. Botella, A. Corma, J.M. López-Nieto, S. Valencia and R. Jacquot, J. Catal. Vol. 195 (2000), p.161.

Google Scholar

[3] G.V. Shanbhag, S.M. Kumbar, T. Joseph and S.B. Halligudi, Tetrahedron Lett. Vol. 47 (2006), p.141.

Google Scholar

[4] B.M. Choudary, M.L. Kantam, M. Sateesh, K.K. Rao and P.L. Santhi, Appl. Catal. A Vol. 149 (1997), p.257.

Google Scholar

[5] C.L. Padro´ and C.R. Apesteguı´a, Catal. Today Vol. 107–108 (2005), p.258.

Google Scholar

[6] I.V. Kozhevnikov, Chem. Rev. Vol. 98 (1998), p.171.

Google Scholar

[7] J. Kaur, K. Griffin, B. Harrison and I. V. Kozhevnikov, J. Catal. Vol. 208 (2002), p.448.

Google Scholar

[8] B. Bachiller-Baeza and J.A. Anderson, J. Catal. Vol. 228 (2004), 225.

Google Scholar

[9] L.A.M. Cardoso, W. Alves, A.R.E. Gonzaga, L.M.G. Aguiar and H.M.C. Andrade, J. Mol. Catal. A: Chem. Vol. 209 (2004), p.89.

Google Scholar

[10] G.D. Yadav and H.G. Manyar, Micropor. Mesopor. Mater. Vol. 63 (2003), p.85.

Google Scholar

[11] Y. Wu, X. Ye, X. Yang, X. Wang, W. Chu and Y. Hu, Ind. Eng. Chem. Res. Vol. 35 (1996), p.2546.

Google Scholar

[12] G.D. Yadav and G. George, J. Mol. Catal. A: Chem. Vol. 292 (2008), p.54.

Google Scholar

[13] K.M. Parida, Sujata Mallick and G.C. Pradhan, J. Mol. Catal. A: Chem. Vol. 297 (2009), p.93.

Google Scholar

[14] B.M. Devassy and S.B. Halligudi, J. Mol. Catal. A: Chem. Vol. 253 (2006), p.8.

Google Scholar

[15] B.M. Devassy and S.B. Halligudi, J. Catal. Vol. 236 (2005), p.313.

Google Scholar

[16] B.M. Devassy, F. Lefebvre and S.B. Halligudi, J. Catal. Vol. 231 (2005), p.1.

Google Scholar

[17] C. Trolliet, G. Coudurier and J.C. Vedrine, Top. Catal. Vol. 15 (2001), p.73.

Google Scholar

[18] G.I. Kapustin, T.R. Brueva, A.L. Klyachko, M.N. Timofeeva, S.M. Kulikov and I.V. Kozhevnikov, Kinet. Katal. Vol. 31 (1990), p.1017.

Google Scholar

[19] A. Biela´nski, A. Luba´nska, J. Po´zniczek and A. Micek-Ilnicka, Appl. Catal. A Vol. 238 (2003), p.239.

Google Scholar

[20] J.B. Moffat, Metal-Oxygen Clusters.The Surface and Catalytic Properties of Heteropoly Oxometalates. Kluwer, New York, 2001.

Google Scholar

[21] M.R.H. Siddiqn, S. Holmes, H. He, W. Smith, E.N. Coker, M.P. Atkins, I.V. Kozhevnikov, Catal. Lett. 66 (2000) 53.

Google Scholar