Synthesis of Antiulcerative Drug Tenatoprazole

Article Preview

Abstract:

An improved synthetic approach of tenatoprazole, an antiulcerative drug, is reported. The first step in this synthesis involves the coupling of 2-mercapto-5-methoxyimidazo[4,5-b]pyridine with 2-chloromethyl-4-methoxy-3,5-dimethylpyridine hydrochloride to afford sulfide 4, and the subsequent step of oxidation using substoichiomitric amount of hydrogen peroxide to give sulfoxide 1 quantitatively. The overall yield is around 80% for both two-step synthesis. The progress in this process is no purification process and affords the target compound with 99% purity by HPLC.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

160-164

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Uchiyama, D. Wakatsuki, B. Kakinoki, Y. Takeuchi, T. Araki, Y. Morinaka. The Long‐lasting Effect of TU‐199, a Novel H+, K+‐ATPase Inhibitor, on Gastric Acid Secretion in Dogs[J]. Journal of Pharmacy and Pharmacology. 1999, 51(4): 457-464.

DOI: 10.1211/0022357991772510

Google Scholar

[2] H. Nagaya, H. Satoh, K. Kubo, Y. Maki. Possible mechanism for the inhibition of gastric (H+ K+)-adenosine triphosphatase by the proton pump inhibitor AG-1749[J]. Journal of Pharmacology and Experimental Therapeutics. 1989, 248(2): 799.

DOI: 10.1016/s0021-5198(19)43492-6

Google Scholar

[3] S. Sripathi, R. R. Bojja, V. R. Karnati, V. V. N. K. V. P. Raju, M. D. Khunt. An Improved Synthesis of Antiulcerative Drug: Tenatoprazole[J]. Organic Process Research & Development. 2009, 13(4): 804-806.

DOI: 10.1021/op800173u

Google Scholar

[4] F. A. Davis, R. T. Reddy, W. Han, P. J. Carroll. Chemistry of oxaziridines. 17. N-(Phenylsulfonyl)(3,3-dichlorocamphoryl)oxaziridine: a highly efficient reagent for the asymmetric oxidation of sulfides to sulfoxides[J]. Journal of the American Chemical Society. 1992, 114(4): 1428-1437.

DOI: 10.1021/ja00030a045

Google Scholar

[5] Matsuishi, N.; Takeda H.; Iizumi, K.; Murakami, K.; Hisamitsu, A. U.S. Patent 4,808,596. (1989)

Google Scholar

[6] WU Yan-chao, HU Fang-zhong, YANG Hua-zheng. Temprature effect in the selective oxidation of pyrazole sulfide derivatives[J]. Huaxue Shiji. 2003,25(6): 329-331.

Google Scholar

[7] M. Gazdar, S. Smiles. The interaction of hydrogen dioxide and sulphides[J]. Journal of the Chemical Society, Transactions. 1908, 93: 1833-1836.

DOI: 10.1039/ct9089301833

Google Scholar

[8] O. Hinsberg. Notiz über Oxy‐chinoxaline[J]. Berichte der deutschen chemischen Gesellschaft. 1908, 41(2): 2031-2033.

DOI: 10.1002/cber.19080410295

Google Scholar

[9] O. Hinsberg. Über farblose und gelbe Thiosalicylsäure[J]. Berichte der deutschen chemischen Gesellschaft. 1910, 43(1): 651-654.

DOI: 10.1002/cber.191004301110

Google Scholar

[10] O. Hinsberg. Über Belichtung von Sulfoxyden und Sulfiden[J]. Berichte der deutschen chemischen Gesellschaft. 1912, 45(2): 2337-2339.

DOI: 10.1002/cber.191204502117

Google Scholar

[11] N. N. Novitskaya, S. I. Chernikova, V. I. Snegotskii, E. F. Klement'eva. Oxidation of hydroxy sulfides.II[J]. Neftekhimiya. 1968, 8(5): 770.

Google Scholar

[12] E. Fromm, J. Flaschen. Stereoisomerie bei den Abkömmlingen des Phenacylsulfids[J]. Justus Liebigs Annalen der Chemie. 1912, 394(3): 310-324.

DOI: 10.1002/jlac.19123940306

Google Scholar

[13] D. Barnard, L. Bateman, M. E. Cain, T. Colclough, J. I. Cunneen. Oxidation of organic sulfides. X. Co-oxidation of sulfides and olefins[J]. Journal of the Chemical Society. 1961. 5339.

DOI: 10.1039/jr9610005339

Google Scholar