Synthesis of Different Nanostructured Zirconia by Mechanically Activated Solid State Reaction

Article Preview

Abstract:

Nanostructured ZrO2 was prepared successfully by mechanically activated solid state reaction. The structural and microstructural of products were monitored using X-ray powder diffraction (XRD), transmission electron microscopy (TEM). The effects of ball milling speed and calcined temperature on products were monitored by XRD. The results of XRD show that the most suitable ball milling speed is 150r/min, and the calcined temperature is 600°C. TEM images show that ZrO2 particles prepare at heating rate of 5°C/min have several advantages in the morphology, spherical shape, narrow size distribution with no hard aggregation, and the particle size is about 15 nm, and at the heating rate of 2.5°C/min, a network structure ZrO2 can be prepared for the first time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

1901-1905

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Birkby, R. Stevens, Key Eng. Mater. 122 (1996)527–552.

Google Scholar

[2] J.W. Fergus, J. Power Sources. 162 (2006)30–40.

Google Scholar

[3] G.D. Wilk, R.M. Wallace, Appl. Phys. Lett. 76 (2000) 112–114.

Google Scholar

[4] E. Dela, L.A. Diaz-Torres Rosa-Cruz, P. Salas, V.M. Castano, J.M. Hernandez, J. Phys. D Appl. Phys. 34 (2001) 83–86.

Google Scholar

[5] A. Corma, Chem. Rev. 95 (1995) 559–614.

Google Scholar

[6] J.C. Vartuli, J.G. Santiesteban, P. Traverso, N. Cardona-Martinez, C.D. Chang, S.A. Stevenson, J. Catal. 187 (1999) 131–138.

Google Scholar

[7] I. Ferrino, M.F. Casula, A. Corrias, M.G. Cutrufello, R. Monaci, G. Paschina, Phys. Chem. Chem. Phys. 2 (2000) 1847–1854.

DOI: 10.1039/a908992f

Google Scholar

[8] T.M. Miller, V.H. Grassian, J. Am. Chem. Soc. 117 (1995) 10969–10975.

Google Scholar

[9] Y. Sun, S. Ma, Y. Du, L. Yuan, S. Wang, J. Yang, F. Deng, F.S. Xiao, J. Phys. Chem. B 109 (2005) 2567–2572.

Google Scholar

[10] J.C. Yori, J.M. Parera, Catal. Lett. 65 (2000) 205–208.

Google Scholar

[11] A. Gajovic, K. Furic, G.S tefanic , S. Music. Journal of Molecular Structure 744–747 (2005) 127–133

Google Scholar

[13] A.V. Chadwick, M.J. Pooley, K.E. Rammutla, S.L.P. Savin, A. Rougier, J. Phys.-Condens. Matter. 3 (2003) 431.

Google Scholar

[14] Shenghui Guo, Guo Chen, Jinhui Peng, Jin Chen, Jinlong Mao, Dongbo Li, Lijun Liu J. Alloys Compd.1(2010) L5-L7

Google Scholar

[15] S. Bid, S.K. Pradhan, J. Appl. Crystallogr. 35 (2002) 517.

Google Scholar

[16] C. Suciu, A.C. Hoffmann, P. Kosinski, Obtaining YSZ nanoparticles by the sol–gel method with sucrose and pectin as organic precursors, J. Mater. Process. Technol.202 (2008) 316–320.

DOI: 10.1016/j.jmatprotec.2007.09.009

Google Scholar

[17] Tatsumi Arima, Kazuya Idemitsu, Kazuhiro Yamahira, Satoshi Torikai, Yaohiro Inaga. J. Alloys Compd. 1-2(2005) 271-276.

Google Scholar

[18] AVILA D M, MUCCILLO E N S. Thermochimica Acta, 256(1995) 391-398.

Google Scholar

[19] PITICESCU R R,MONTY C, TALOl D, MOTOC A, AXINTE S. Journal of the European Ceramic Society, 10-11(2001)2057-2060.

DOI: 10.1016/s0955-2219(01)00171-6

Google Scholar

[20] Masoud Salavati-Niasari, Mahnaz Dadkhah, Fatemeh Davar, Inorganica Chimica Acta, 11(2009) 3969-3974

DOI: 10.1016/j.ica.2009.05.036

Google Scholar

[21] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hal1, Englewood Cliffs, 2001.

Google Scholar