Pd Nanoparticles Fabricated on Organic-Group Modified Silica and its Catalytic Performance for Acetylene Hydrogenation

Article Preview

Abstract:

Aminopropyl-functionalized silica (NH2-SiO2) was obtained via a sol-gel process using tetraethoxylsilicate (TEOS) and aminopropyltriethoxysilane (APTES). Aminopropyl group contained silica was further modified with formaldehyde to achieve a novel organic group modified silica, denoted as CH2O-SiO2. Using CH2O-SiO2 as support to prepare surported Pd catalyst (denoted as Pd/M-SiO2), small Pd nanoparticles (1-2 nm) were fabricated on CH2O-SiO2 surport. Hydrogenation of acetylene is used as probe reaction to evaluate the catalytic performance of Pd/M-SiO2. The results indicate that Pd/M-SiO2 exhibits unique catalytic property, which the selectivity of ethylene increases with the increase of acetylene conversion. In-situ DRIFTS spectra of CO adsorption show that the organic groups presented on the silica affect the electronic property of the very small Pd nanoparticles, which causes the change of reaction paths of hydrogenation of acetylene over Pd/M-SiO2 compared with traditional supported Pd catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

1884-1888

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Adriano Zecchina, Elena Groppo, and Silvia Bordiga: Chem. Eur. J. Vol 13(2007), p.2440

Google Scholar

[2] C. N. R. Rao, V. Vijayakrishnan, A. K. Santra, M. W. J. Prins: Angew. Chem. Vol 104 (1992), p.1110.

Google Scholar

[3] Yu. A. Ryndin, L. V. Nosova, A. I. Boronin and A. L. Chuvilin: Appl. Catal. Vol 42 (1988), p.131.

Google Scholar

[4] A. Sárkány, A. Horváth, A. Beck: Appl. Catal. A. Vol 229 (2002), p.117.

Google Scholar

[5] V. N. Kalevaru, A. Benhmid, J. Radnik, M. M. Pohl, U. Bentrup, A. Martin: J. Catal. Vol 246 (2007), p.399.

Google Scholar

[6] F. Arena, G. Cum, R. Gallo, A. Parmaliana: J. Mol. Catal. Vol 110 (1996), p.235.

Google Scholar

[7] C. M. Yang, P. H. Liu, Y.F. Ho, C.Y. Chiu, K.J. Chao: Chem. Mater. 15 (2003), p.275.

Google Scholar

[8] M. Okumura et. al: Catal. Lett. Vol 51(1998), p.53

Google Scholar

[9] M. Schreier et al.: J. Catal. Vol 225(2004), p.190

Google Scholar

[10] Shimizu et.al: J. Catal. Vol 228 (2004), p.141

Google Scholar

[11] Bedford et.al.: J. Organometallic Chem. Vol 633(2001), p.173

Google Scholar

[12] W. Cao, H. B. Zhang, Y. Z. Yuan, Catal. Lett. Vol 91 (2003), p.243

Google Scholar

[13] Q. S. Liu and J. H. Lunsford, Appl. Catal. A: General Vol 314 (2006), p.94

Google Scholar

[14] T. Ramanathan, F. T. Fisher, R. S. Ruoff, L. C. Brinson, Chem. Mater. Vol 17 (2005), p.1290

Google Scholar

[15] T. Kasahara, K. Inumaru, S. Yamanaka, Micropor. Mesopor. Mater. Vol 76 (2004), p.123

Google Scholar

[16] G. C. Bond, P. B. Wells, J. Catal. Vol 4 (1965), 211

Google Scholar

[17] Jung Hwa Kang, EunWoo Shin,Woo Jae Kim, Jae Duk Park, and Sang Heup Moon J. Catal. Vol 208 (2002), p.310

Google Scholar

[18] Larsson, M., Jansson, J., and Asplund, S., J. Catal. Vol 178 (1998), p.49

Google Scholar