DFT Study of Substituted Effect on Absorption and Emission Spectra of Naphthoquinone Derivatives

Article Preview

Abstract:

The density functional theory (DFT) is used to compute the ground-state geometries of naphthoquinone derivatives, and lowest singlet excited-state geometries of them have been investigated by the singles configuration interaction (CIS) method. The absorption and emission spectra are calculated by time-dependent DFT (TDDFT) on the basis of the ground- and excited-state geometries, respectively. Our calculations are in good agreement with the available experimental results. The calculated results show that with the introduction of hydroxyl the red-shift was found in the absorption and emission, and the range of spectra reach the visible region. Furthermore, in the absorptions electron transition type was identified from the point-view of molecular orbitals. Study of the effect of hydroxyl and site on spectra can provide the helpful information on further designing molecular devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

1878-1883

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. H. Thomson, Naturally Occurring Quinones, Academic Press, New York, (1971)

Google Scholar

[2] J. Griffiths, Colour and Constitution of Organic Molecules, Academic Press, London, 1976.

Google Scholar

[3] H. Thor, M. T. Smith, P. Hartzell, G. Bellomo, S. A. Jewell, S. Orrenius, J. Biol. Chem. 257 (1982) 2419.

Google Scholar

[4] J. Malerich, T. Maimone, G. Elliott, D. Trauner, J. Am. Chem. Soc. 127 (2005) 6276.

Google Scholar

[5] M. S. Shvartsberg, E. A. Kolodina, N. I. Lebedeva, L. G. Fedenok, Tetrahedron Letters 50 (2009) 6769.

DOI: 10.1016/j.tetlet.2009.09.110

Google Scholar

[6] M. Adachi, S. Nakamura, Dyes Pigments 17 (1991) 287.

Google Scholar

[7] M. S. Khan, Z.H. Khan, Spectrochim. Acta A 61 (2005) 777.

Google Scholar

[8] E. A. Perpète , C. Lambert, V. Wathelet , J. Preat , D. Jacquemin, Spectrochim Acta A Mol Biomol Spectrosc 68 (2007)1326.

Google Scholar

[9] T. Satoh, T. Tsuji, H. Matsuda, S. Sudoh, Bull. Chem. Soc. Japan 80 (2007) 321

Google Scholar

[10] G. Lamoureuxa, A. L. Pereza, M. Arayaa, C. Aguero, J. Phys. Org. Chem 21 (2008) 1022.

Google Scholar

[11] D. Jacquemin, J. Preat, V. Wathelet, E. A. Perpete, Chem. Phys. 328 (2006) 324.

Google Scholar

[12] J. Baker, P. Pulay, J. Chem. Phys. 117 (2002) 1441.

Google Scholar

[13] E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52 (1984) 997.

Google Scholar

[14] J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch, J. Phys. Chem. 96 135 (1992).

Google Scholar

[15] M. J. Frisch, G.W. Trucks, H.B. Schlegel, ea tl, Gaussian 03, Revision B.04, Gaussian, Inc., Wallingford, CT, 2004.

Google Scholar

[16] A. Kuboyama, S. Matsuzaki, H. Takagi, H. Arano, Bull. Chem. Soc. Japan 47 (1974) 1604.

Google Scholar