Electrical, Optical, and Etching Characteristics of ZnO:Al Films Prepared by RF Magnetron

Article Preview

Abstract:

ZnO:Al (AZO) films were prepared by radio frequency (RF) magnetron sputtering at various RF power (70-200W), the electrical and optical properties of AZO films were first investigated. The films deposited at 170W and 200W had the optimum opto-electrical property and then were surface textured by a post-deposition chemical etching with 0.5% HCl for 10-30s, all these films developed a craterlike surface morphology and the crater became larger and deeper as the etching time was increased. The light scattering property of AZO films was researched by calculated spectral haze. The AZO film deposited at 170W and etched 30s had the optimal light scattering property due to its most suitable craterlike surface morphology. Introduction

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

1862-1867

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Groenen, J. Löffler, J.L. Linden, R.E.I. Schropp and M.C.M. van de Sanden: Thin Solid Films Vol.492 (2005), p.298

DOI: 10.1016/j.tsf.2005.06.055

Google Scholar

[2] S.Y. Kuo, K.C. Liu, F.I. Lai, J.F. Yang, W.C. Chen, M.Y. Hsieh, H.I. Lin and W.T. Lin: Microelectronics Reliability Vol. 50 (2010), p.730

Google Scholar

[3] M. de la, L. Olvera, H. Gomez and A. Maldonado: Sol Energy Mate Sol Cells Vol. 91 (2007), p.1449

Google Scholar

[4] J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang and J. Yuan et al.: J Appl Phys Vol. 100 (2006), p.073714

Google Scholar

[5] S. Mridha and D. Basak: J Phys D Appl Phys Vol. 40 (2007), p.6902

Google Scholar

[6] S.M. Park, T. Ikegami, K. Ebihara and P.K. Shin: Appl Surf Sci Vol. 253 (2006), p.1522

Google Scholar

[7] Z.A. Wang, J.B. Chu, H.B. Zhu, Z. Sun, Y.W. Chen and S.M. Huang: Solid-State Electronics Vol. 53(2009), p.1149

Google Scholar

[8] B. Rech and H. Wagner: Appl Phys A: Mater Sci Process Vol. 69 (1999), p.155

Google Scholar

[9] M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig and B. Rech et al.: J Appl Phys Vol. 101 (2007), p.074903

Google Scholar

[10] Y. Igaski, H. Kanma: Appl. Surf. Sci. Vol.169 (2001), p.508

Google Scholar

[11] K.H. Kim, K.C. Park and D.Y. Ma: Thin Solid Films Vol.305 (1997), p.201

Google Scholar

[12] S.J. Tark, M.G. Kang, S. Park, J.H. Jang, J.C. Lee, W.M. Kim, J.S. Lee and D. Kim: Current Applied Physics Vol. 9 (2009), p.1318

Google Scholar

[13] T. Minami, S. Ida and T. Miyata: Thin Solid Films Vol. 416 (2002), p.96

Google Scholar

[14] W.F. Yang, Z.G. Liu, D.L. Peng, F. Zhuang, H.L. Huang, Y.N. Xie and Z.Y. Wu: Applied Surface Science Vol. 255 (2009), p.5669

Google Scholar

[15] H.X. Chen, J.J. Ding, X.G. Zhao and S.Y. Ma: Physica B Vol.405(2010), p.1341

Google Scholar

[16] Z.F. Liu, F.K. Shan, Y.X. Li, B.C. Shin and Y.S. Yu: J. Cryst. Growth Vol. 259(2003), p.130

Google Scholar

[17] S.M. Park, T. Ikegami, K. Ebihara and P.K. Shin: Appl. Surf. Sci. Vol. 253(2006), p.1522

Google Scholar

[18] O. Klutha, B. Rech, L. Houben, S. Wieder, G. SchoÈpe, C. Beneking, H. Wagner, A. Loffl and H.W. Schock: Thin Solid Films Vol. 351 (1999), p.249

DOI: 10.1016/s0040-6090(99)00085-1

Google Scholar

[19] O. Kluth, G. Schope, J. Hüpkes, C. Agashe, J. Müller and B. Rech: Thin Solid Films Vol. 442 (2003), p.83

DOI: 10.1016/s0040-6090(03)00949-0

Google Scholar

[20] J. Hüpkes, J. Müller and B. Rech: Springer Series in Materials Science Vol. 104(2008), p.359

Google Scholar

[21] H. Zhu, E. Bunte, J. Hüpkes, H. Siekmann and S. M. Huang: Thin Solid Films Vol. 517 (2009), p.3161

DOI: 10.1016/j.tsf.2008.11.116

Google Scholar