Synthesis and Characterizations of MCM-41 Silica with Thick Pore Wall

Article Preview

Abstract:

Nano-structured mesoporous silica with highly ordered 2D hexagonal topology has been synthesized using novel surfactant cetyltrimethylammonium tosylate (CTATos) as template via directly hydrothermal treatment at high temperature of 175 °C and varied crystallization time. The maximum pore wall thickness is up to 2.2 nm calculated by BdB method from desorption branch. The enlargement of pore wall thickness and unit-lattice of currently synthesized MCM-41 silica is attributed to the migration and subsequent deposition of the silicate species in the inner pore channel.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

2034-2037

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. B. Gao, S. A. Che, Adv. Funct. Mater. Vol. 20 (2010), p.2750

Google Scholar

[2] S. Shylesh, M. J. Jia, W. R. Thiel, Eur. J. Inorg. Chem. (2010), p.4395

Google Scholar

[3] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science Vol. 279 (1998), p.548

Google Scholar

[4] N. Xiao, L. Wang, S. Liu, Y. C. Zou, C. Y. Wang, Y. Y. Ji, J. W. Song, F. Li, X. Meng, F. S. Xiao, J. Mater. Chem. Vol. 19 (2009), p.661

Google Scholar

[5] F. Michaux, C. Carteret, M. J. Stébé, J. L. Blin, Micropor. Mesopor. Mater. Vol.116 (2008), p.308

Google Scholar

[6] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature Vol. 352 (1992), p.710

Google Scholar

[7] K. Zhang, H. L. Chen, B. Albela, J. G. Jiang, Y. M. Wang, M. Y. He, L. Bonneviot, Eur. J. Inorg. Chem. (2011), p.59.

Google Scholar

[8] M. Kruk, M. Jaroniec, A. Sayari, J. Phys. Chem. B Vol. 103 (1999), p.459.

Google Scholar

[9] R. Mokaya, Chem. Commu. (2001) p.1092

Google Scholar

[10] A. Corma, Q. Kan, M. T. Navarro, J. Perez-Pariente, F. Rey, Chem. Mater.Vol. 9 (1997), p.2123

Google Scholar

[11] E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. Vol. 73 (1951), p.373

Google Scholar

[12] Z. Luan, E. M. Maes, P. W. Van Der Heide, D. Zhao, R. S. Czernuszewicz, L. Kevan, Chem. Mater. Vol. 11 (1999), p.3680

DOI: 10.1021/cm9905141

Google Scholar

[13] J. C. P. Broekhoff, J. H. de Boer, J. Catal.Vol. 9 (1967), p.8

Google Scholar

[14] Jr. W. W. Lukens, P. Schmidt-Winkel, D. Zhao, J. Feng, G. D. Stucky, Langmuir Vol. 15 (1999), p.5403

Google Scholar

[15] K. Zhang, B. Albela, M. Y. He, Y. M. Wang, L. Bonneviot, Phys. Chem. Chem. Phys. Vol. 11 (2009), p.2912

Google Scholar

[16] K. Zhang, Y. M. Wang, B. Albela, L. Chen, M. Y. He, L. Bonneviot, New J. Chem. Vol. 33 (2009), p.2479

Google Scholar