Theoretical Investigation on Microstructure of the Novel 24R-Type LPSO Phase in Mg97Zn1Y2 Alloy

Article Preview

Abstract:

The first-principles calculation based on density functional theory has been carried out to study the microstructural feature of the novel 24R-type long period stacking ordered structure in Mg97Zn1Y2 alloy. The lattice positions of the Y and Zn atoms are determined theoretically, it is shown that the additive atoms are firstly enriched in the stacking fault layers at the two ends, a small amount are distributed in the interior stacking fault layers of the structure. And the arrangement of these Y and Zn atoms trends to be along the diagonal line of the unit cell. The structural stability is analyzed and the electronic density of state is discussed as well as.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

2359-2366

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.L. Edgar: Magnesium Alloys and their Application (K.U. Kainer Publications, France 2000).

Google Scholar

[2] Y. Kawamura, K. Hayashi, A. Inoue and T. Masumoto: Mater. Trans. Vol. 42 (2001), p.1172

Google Scholar

[3] Y. Kawamura and S. Yoshimoto: Mg Technol (TMS Publications, Japan 2005).

Google Scholar

[4] A. Inoue, M. Matsushita, Y. Kawamura, K. Amiya, K. Hayashi and J. Koike: Mater. Trans. Vol. 43 (2002), p.580

Google Scholar

[5] A. Ono, E. Abe, T. Itoi, M. Hirohashi, M. Yamasaki and Y. Kawamura: Mater. Trans. Vol. 49 (2008), p.990

Google Scholar

[6] Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-ishi, K. Hono and J.F. Nie: Scripta. Mater. Vol. 60 (2009), p.980

DOI: 10.1016/j.scriptamat.2009.02.029

Google Scholar

[7] M. Yamasaki, K. Nyu and Y. Kawamura: Mater Sci Forum. Vol. 937 (2003), p.419

Google Scholar

[8] M. Nishida and T. Yamamuro: Mater. Sci. Forum. Vol. 419 (2003), p.715

Google Scholar

[9] E. Abe, Y. Kawamura and K. Hayashi: Acta. Mater. Vol. 50 (2002), p.3845

Google Scholar

[10] D.H. Ping and K. Hono: Philos. Mag. Let. Vol. 82 (2002), p.543

Google Scholar

[11] M. Matsuda, S. Ii and Y. Kawanura: Mater. Sci. Eng. A. Vol. 393 (2005), p.269

Google Scholar

[12] M. Yamasaki, T. Anan and S. Yoshimoto: Scripta. Mater. Vol. 53 (2005), p.799

Google Scholar

[13] K. Amiya1, T. Ohsuna and A. Inoue: Mate. Trans. Vol. 44 (2003), p.2151

Google Scholar

[14] Y. Kawamura, T.K. Scri, S. Izumi and M. Yamasaki: Scripta. Mater. Vol. 55 (2006), p.453

Google Scholar

[15] M. Matsuura and K. Konno: Mater. Trans. Vol. 47 (2006), p.1264

Google Scholar

[16] Z.P. Luo and S.Q. Zhang: Journal of Alloys and Compounds. Vol. 209 (1994), p.275

Google Scholar

[17] I.J. Polmear: Mater. Sci. Technol. Vol. 10 (1994), p.1

Google Scholar

[18] M. Matsuda, S. Ii and Y. Kawamura: Mater. Sci. Eng. A. Vol. 386 (2004), p.447

Google Scholar

[19] T. Itoi, T. Seimiya and Y. Kawamura: Scripta. Mater. Vol. 51 (2004), p.107

Google Scholar

[20] Y.F. Wang, Z.Z. Wang, N. Yu, X.Q. Zeng, W.J. Ding and B.Y. Tang: Scripta. Mater. Vol. 58 (2008), p.807

Google Scholar

[21] P. Chen, D.L. Li, J.X. Yi, B.Y. Tang, L.M. Peng and W.J. Ding: Journal of Alloys and Compounds. Vol. 485 (2009), p.672

Google Scholar

[22] J.X. Yi, P. Chen, D.L. Li, B.Y. Tang, L.M. Peng and W.J. Ding: Journal of Alloys and Compounds. Vol. 509 (2011), p.669

Google Scholar

[23] G. Kresse and J. Furthmüller: Comp. Mater. Sci. Vol. 6 (1996), p.15

Google Scholar

[24] G. Kresse and J. Furthmüller: Phys. Rev. B. Vol. 54 (1996), p.11169

Google Scholar

[25] J. P. Perdew and Y. Wang: Phys. Rev. B. Vol. 45 (1992), p.13244

Google Scholar

[26] P.E. Blöchl: Phys. Rev. B. Vol. 50 (1994), p.17953

Google Scholar

[27] G. Kresse and D. Joubert: Phys. Rev. B. Vol. 59 (1999), p.1758

Google Scholar

[28] H.J. Monkhorst and J.D. Pack: Phys. Rev. B. Vol. 13 (1976), p.5188

Google Scholar

[29] P.E. Blöchl, O. Jepsen: Phys. Rev. B. Vol. 49 (1994), p.16223

Google Scholar

[30] W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon Press, Oxford 1967).

Google Scholar

[31] A. Datta and U. Ramamurty: Comp. Mater. Sci. Vol. 37 (2006), p.69

Google Scholar

[32] M. Matsuura and M. Sakurai: Journal of Alloys and Compounds. Vol. 353 (2003), p.240

Google Scholar

[33] C. Wolverton: Acta. Mater. Vol. 49 (2001), p.3129

Google Scholar

[34] Y.M. Zhu, A.J. Morton, M. Weyland and J.F. Nie: Acta. Mater. Vol. 58 (2010), p.464

Google Scholar

[35] U.I. Zubov and N.P. Tretiakov: Phys. Lett. A. Vol. 198 (1995), p.223

Google Scholar

[36] B.R. Sahu: Mater. Sci. Eng. B. Vol. 49 (1997), p.74

Google Scholar

[37] H. Norbert and Y.D. Huang: Adv. Eng. Mater. Vol. 8 (2006), p.235

Google Scholar

[38] J.J. Gilman: Electronic Basis of the Strength of Materials (Cambridge University Press, United Kingdom 2003).

Google Scholar

[39] G. Garcés, M. Maeso, I. Todd, P. Pérez and P. Adeva : Journal of Alloys and Compounds. Vol. 432 (2007), p.10

Google Scholar