Rendering Rayon Fibres Antimicrobial and Thermal-Responsive via Layer-by-Layer Self-Assembly of Functional Polymers

Article Preview

Abstract:

A thermal-responsive polymer was prepared by partially acetalyzing poly(vinyl alcohol) (PVA). The completely reversible polymer aggregation and dissolution occur above and below a low critical solution temperature (LCST) for the aqueous solution of the modified PVA. The partially acetalized PVA (APVA) with higher molecular weight and higher degree of acetalysis exhibited a lower LCST transition and was used as an anionic polymer for polymer complexation. Water-soluble polymer, cationic polyhexamethylene guanidine hydrochloride (CPHGH) with antimicrobial property, was also prepared. In conjunction with APVA, CPHGH created the unique antimicrobial polymer multilayers on the surfaces of rayon fibres via layer by layer (LbL) assembly. AFM images revealed that the particles generated by multilayers became larger after the material was treated at 60°C; while the roughness of the surfaces was increased as the layer number increased and then decreased. Moreover, antimicrobial tests also demonstrated that the rayon fiber assembled with (CPHGH/APVA) multilayers exhibited higher antimicrobial activity against E. coli and s. aureus.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

1103-1106

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhao, L. Tremblay and Y. Zhao: J. Polym. Sci. Pol. Chem. Vol. 48 (2010), p.4055

Google Scholar

[2] R.S. Lee, W.H. Chen and Y.T. Huang: Polymer Vol. 51 (2010), p.5942

Google Scholar

[3] S.M. Cho and B.K. Kim: J. Biomat. Sci-Polym. E. Vol. 21 (2010), p.1051

Google Scholar

[4] H.J. Dou, W.H. Yang, K. Tao, W.W. Li and K. Sun: Langmuir Vol. 26 (2010), p.5022

Google Scholar

[5] S.J. Li, S. Pilla and S.Q. Gong: J. Polym. Sci. Pol. Chem. Vol. 47 (2009), p.2352

Google Scholar

[6] Y.F. Pan, H.N. Xiao, G.L. Zhao and B.H. He: J. Appl. Polym. Sci. Vol. 110 (2008), p.2698

Google Scholar

[7] M. Gümüşdere., O. Müftüoğlu and A.G. Karakeçili: React. Funct. Polym. Vol. 58 (2004), p.149

Google Scholar

[8] H. Lu, D.F. Wei, H.N. Xiao, A.N. Zheng and F.Z. Hu: Acta Polym. Sin. Vol. 12 (2007), p.1161

Google Scholar

[9] K.Y. Lee and D. J. Mooney: Chem. Rev. Vol. 101 (2001), p.1869

Google Scholar

[10] T. Ta, A.J. Convertine, C.R. Reyes, P.S. Stayton and T.M. Porter: Biomacromolecules Vol. 11 (2010), p. (1915)

Google Scholar

[11] S. Doleski, L. Yao, A. Pandit and C. Elvira: J. Biomed. Mater. Res. Vol. 94A (2010), p.457

Google Scholar

[12] M. Kumar, R. Muzzarelli and C. Muzzarelli: Chem. Rev. Vol. 104 (2004), p.6017

Google Scholar

[13] A. Chilkoti, M.R. Dreher, D.E. Meyer and D. Raucher: Adv. Drug Deliver. Rev. Vol. 54 (2002), p.613

Google Scholar

[14] W.S. Shim, J.S. Yoo, Y.H. Bae and D.S. Lee: Biomacromolecules Vol. 6 (2005), p.2930

Google Scholar

[15] M. Benaglia, A. Puglisi and F. Cozzi: Chem. Rev. Vol. 103 (2003), p.3401

Google Scholar

[16] D.E. Bergbreiter: Chem. Rev. Vol. 102 (2002), p.3345

Google Scholar

[17] D.J. Gravert and K.D. Janda: Chem. Rev. Vol. 97 (1997), p.489

Google Scholar

[18] Y.M. Zhang, J.M. Jiang and Y.M. Chen: Polymer Vol. 40 (1999), p.6189

Google Scholar

[19] R.K. Iler: J. Colloid Interf. Sci. Vol. 21 (1966), p.569

Google Scholar

[20] H. Lu, A.N. Zheng and H.N. Xiao: Polym. Advan. Technol. Vol. 18 (2007), p.335

Google Scholar

[21] S. Guedidi, Y. Yurekli, A. Deratani, P. Dejardin, C. Innocent, S.A. Altinkaya, S. Roudesli and A. Yemenicioglu: J. Membrane Sci. Vol. 365 (2010), p.59

DOI: 10.1016/j.memsci.2010.08.042

Google Scholar

[22] W.Y. Yuan and C.M. Li: Chem. Commun. Vol. 46 (2010), p.9161

Google Scholar

[23] L. Wagberg, S. Forsberg and A. Johansson: J. Pulp Pap. Sci. Vol. 28 (2002), p.222

Google Scholar

[24] Y.F. Pan, H.N. Xiao, G.L. Zhao and B.H. He: Polym. Bull. Vol. 61 (2008), p.541

Google Scholar