Porous SiO2/SiC Fiber Via Carbothermal-Reduction of Hybrid Fiber in Air Flows

Article Preview

Abstract:

Using tetraethoxysilane (TEOS) and novolac-PF as raw materials, SiO2/PF hybrid fibers were prepared via sol-gel associated with drawing process, and then sintered at different temperatures (500-1300 °C) under air atmosphere. The microstructure variation and reaction mechanism of the fiber were investigated by FT-IR, XRD, and SEM measurements. The results showed that the microstructure variation of the hybrid fiber was influenced greatly by sintering temperatures. When the sintering temperature was below 900 °C, the fibers were amorphous, and converted into porous SiO2/SiC fibers after being sintered at 1300 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

1492-1496

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Tezuka, K. Tadanaga, A. Hayashi, M. Tatsumisago, Solid. State. Ionics. 179 (2008), p.1151

DOI: 10.1016/j.ssi.2008.02.021

Google Scholar

[2] J. Tronto, F. Leroux, M. Dubois, C. Taviot-Gueho. J.B. Valim, J. Phys. Chem. Solids. 67 (2006), p.978

DOI: 10.1016/j.jpcs.2006.01.014

Google Scholar

[3] R.D. Maggio, S. Dirè, E. Callone, F. Girardi, G. Kickelbick, J. Sol-Gel. Sci. Tech. 48 (2008), p.168

DOI: 10.1007/s10971-008-1754-8

Google Scholar

[4] K. Iketani, R.D. Sun, M. Toki, K. Hirota, O. Yamaguchi, J. Phys. Chem. Solids. 64 (2003), p.507

Google Scholar

[5] Q.S. Song, T.J. Shi, H.H. Ma, Polym. Bull. 61 (2008), p.473

Google Scholar

[6] Z.Y. Chu, C.X. Feng, Y.C. Song, J. Mater. Sci. Lett. 22 (2003), p.725

Google Scholar

[7] I. Hasewaga, Y. Fukuda, M. Kajiwara, Ceram. Int. 25 (1999), p.523

Google Scholar

[8] I. Hasegawa, Y. Fukuda, T. Okada, M. Kajiwara, J. Sol-Gel. Sci. Tech. 13 (1998), p.485

Google Scholar

[9] I. Hasewaga, T. Nakamura, S. Motojima, M. Kajiwara, J. Sol-Gel. Sci. Tech. 8 (1997), p.577

Google Scholar

[10] Q.S. Song, T.J. Shi, J. Appl. Chem. 25 (2008), p.1240 (in Chinese)

Google Scholar

[11] Q.S. Song, K. Zhang, B. Fei, S. Xu, J. Syn. Cryst. 38 (2009), p.1560 (in Chinese)

Google Scholar

[12] W.L. Zhou, M. Yoshino, H. Kita, K. Okamoto, Ind. Eng. Chem. Res. 40 (2001), p.4801

Google Scholar

[13] S. Gallis, M. Huang, V. Nikas, H. Efstathiadis, E. Eisenbraun, A. Kaloyeros, et al, Mater. Res. Soc. 866 (2005), p.651

Google Scholar

[14] S. M. Herman, R.L. Oréfice, A.P.P. Mansur, Polymer. 45 (2004), p.7193

Google Scholar

[15] R. Viitala, M. Jokinen, S.L. Maunu, H. Jalonen, J.B. Rosenholm, J. Non-Cryst. Solids. 351(2005), p.3225

DOI: 10.1016/j.jnoncrysol.2005.08.023

Google Scholar

[16] D. Dhage, H.C. Lee, M.S. Hassan, M.S. Akhtar, C.Y. Kim, J.M. Sohn, et al, Mater. Lett. 63 (2009), p.174

Google Scholar

[17] A.N. Kornev, V.V. Semenov, Y.U.A. Kurskii, Russ. Chem. Bull. 45 (1996). p, 1440

Google Scholar

[18] M.A. Schiavon, C. Gervais, F. Babonneau, G.D. Soraru, J. Am. Ceram. Soc. 87 (2004). p, 203

Google Scholar

[19] Y.D. Xu, W.C. Zhou, L.T. Zhang, L.F. Cheng, J. Mater. Process. Tech. 101 (2000), p .44

Google Scholar

[20] R. Sharma, D.V.S. Rao, V.D. Vankar. Mater. Lett. 62 (2008), p.3174

Google Scholar