3D Numerical Simulation of Fluid Flow and Heat Transfer in Tube with Spiral-Flange Insert

Abstract:

Article Preview

With the help of Fluent 6.2 and supporting software, 3D numerical simulation of fluid flow and heat transfer enhancement of plastic spiral tubes were performed on computer, and the velocity, turbulence intensity and improvement of convective heat transfer coefficient distribution in plastic spiral tubes were analyzed and compared with those in smooth tubes, and characteristics of fluid flow and heat transfer were obtained. The results showed that there were obvious axial, tangential and radial velocities in spiral space, and they were bigger than those in smooth tubes. The turbulence intensity was also increased greatly because of the existence of spiral channels. The dirt production was prevented and the tube's convection heat transfer was effectively strengthened. Its surface average heat transfer coefficient had been enhanced by about 20% compared with the smooth tubes; The pressure drop caused by plastic spiral flange was in the permissible range of engineering application. It was suitable for the heat exchanger at a flow velocity lower than 0.8m/s.

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Edited by:

Zhong Cao, Yinghe He, Lixian Sun and Xueqiang Cao

Pages:

1508-1515

DOI:

10.4028/www.scientific.net/AMR.236-238.1508

Citation:

Q. S. Li et al., "3D Numerical Simulation of Fluid Flow and Heat Transfer in Tube with Spiral-Flange Insert", Advanced Materials Research, Vols. 236-238, pp. 1508-1515, 2011

Online since:

May 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.