Improving the Cold Flow Properties of Biodiesel Derived from Palm

Abstract:

Article Preview

The chemical compositions of biodiesel derived from palm (PME) were analyzed by gas chromatography-mass spectrometry (GC-MS). The cold flow properties of PME were studied by multifunctional low temperature tester, differential scanning calorimetry (DSC) and solution crystallization theory. Three approaches for improving cold flow properties of PME were put forward: crystallization fractionation, blending with winter petrodiesel and treating with cold flow improver (CFI) additives. A good correlation model was proposed for prediction cold filter plugging point (CFPP) by winter petrodiesel blending ratio. The study shows that the PME was mainly composed of saturated fatty acid methyl esters (SFAME): C14:0-C24:0 and unsaturated fatty acid methyl esters (UFAME): C16:1-C22:1, C18:2 and C18:3. The mass fraction of SFAME and UFAME was 35.86% and 62.83%, respectively. The CFPP of PME was 8°C. Crystallization fractionation and blending with -10 petrodiesel (-10PD) decreased the CFPP to 0 and -12°C, respectively. Treating with CFI additives (volume fraction ≤ 1.5%) decreased the CFPP of PME and PME/-10PD to 2 and -26°C, respectively. This study has effectively improved cold flow properties of PME and provided theoretical support for using PME during cold weather.

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Edited by:

Zhong Cao, Yinghe He, Lixian Sun and Xueqiang Cao

Pages:

164-168

DOI:

10.4028/www.scientific.net/AMR.236-238.164

Citation:

Y. B. Lai et al., "Improving the Cold Flow Properties of Biodiesel Derived from Palm", Advanced Materials Research, Vols. 236-238, pp. 164-168, 2011

Online since:

May 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.