One Step Synthesis of Europia Nanoparticles via Thermal Decomposition of Europium Propionate Crystals

Article Preview

Abstract:

Eu2O3 nanoparticles were fabricated by thermal decomposition of europium propionate crystals, which can be facilely obtained via crystallization. The decomposition and morphlogy of the crystallized product were characterized by X-ray diffractionmetry (XRD), simultaneous differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) as well as scanning electron microscopy (SEM). The effects of the calcination temperature on the resultant microstructures such as crystallinity, particle size and particle dispersibility were investigated by XRD and transmission electron microscopy (TEM). The results indicated the morphology of the as-calcined products shows transmissibility compared with the precursor and that the calcination temperature of europium propionate is crucial to evolution of the resultant morphology from three-dimensional network of agglomerated nanoparticles to dispersed nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

1799-1802

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.Y. Adachi and N.Imanaka: Chem. ReV. Vol.98(1998), p.1479.

Google Scholar

[2] C.R. Ronda: J. Alloys Compd. Vol.225(1995), p.534.

Google Scholar

[3] X. Jing, T. Ireland, C. Gibbons, D.J. Barber, J. Silver, A. Vecht, G. Fern, P. Trowga and D.C. Morton: J. Electrochem. Soc. Vol.146(1999), p.4654.

DOI: 10.1149/1.1392689

Google Scholar

[4] J.G. Li, X.D. Li, X.D. Sun and T. Ishigaki: J. Phys. Chem. C. Vol.112(2008), p.11707.

Google Scholar

[5] X.R. Hou, S.M. Zhou, Y.K. Li and W.J. Li: J. Alloys Compd. Vol.494 (2010), p.382

Google Scholar

[6] G. Wakefield, H. A. Keron, P. J. Dobson and J. L. Hutchison: J. Colloid Interf. Sci. Vol. 215(1999), p.179

Google Scholar

[7] W.H. Hou, J. Ma, Q.J. Yan and C. Chen: Acta Chim. Sinica Vol.58(2000), p.683(In Chinese)

Google Scholar

[8] G.S. Wu, L.D Zhang, B.C. Cheng, T. Xie and X.Y. Yuan: J. Am. Chem. Soc. Vol.9 (2004), p.5976

Google Scholar

[9] L. Yang, Y.H. Tang, Z. Yang and Q. Wang: J. Sol-Gel Sci. Technol. Vol.45 (2008), p.23.

Google Scholar

[10] F. Cui, J. Zhang, T. Cui, S. Liang, L. Ming, Z. Gao and B. A. Yang: Nanotechnology Vol.19 (2008), p.65607.

Google Scholar

[11] V.G. Pol, O.Palchik, A. Gedanken and I. Felner J. Phys. Chem. B Vol.106(2002), p.9737.

Google Scholar

[12] C.H. Yan, J. Yao, L.D. Sun, C. Qian, C.H. Liu and C.S. Liao: Chin. J. Lumin. Vol.20(1999), p.254. (In Chinese).

Google Scholar

[13] G.L. Gao, Y. Fang, M.Z. Wang and D.D. Hu: Acta. Physico-Chimica Sinica. Vol.18(2002), p.399(In Chinese).

Google Scholar

[14] Y.Q. Zhai, Z.H. Yao, S.W. Ding, M.D. Qiu, J. Zhai, Mater. Lett. Vol. 57(2003),p.2901.

Google Scholar

[15] Y.X. Li, C.M. Cheng, W.F. Chen, J.D. Hu, X.Z. Zhou and P.G. Hu: Chin. J. Inorg. Chem. Vol.22(2006), p.733(In Chinese).

Google Scholar

[16] J.D. Hu, Y.X. Li, X.Z. Zhou and M.X. Cai: Mater. Lett. Vol.61(2007), p.4989.

Google Scholar

[17] V.E. Plyushchev, G..V. Nadezhdina and G..S. Loseva: Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. Vol.14 (1971), p.656 (In Russian)

DOI: 10.6060/ivkkt.20236606

Google Scholar