One Simple Approach to Prepare Size-Tunable ZnS Nanocrystals by Electron Sputtering

Article Preview

Abstract:

Size-tunable ZnS nanocrystals were obtained by electron sputtering. Almost sputtered nanocrystals were spherical and well-dispersed. The sizes of deposited ZnS nanocrystals appeared a good gradient distribution according to their distance away from the sputtering target. These nanocrystals had gradual changes in diameter from about 1 to 15 nm. This research may afford a simple and efficient method to prepare well-dispersed semiconductor nanocrystals in a small size range.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

2097-2101

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science. 292 (2001) 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[2] H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, Nano Lett. 4 (2004) 1059-1062.

Google Scholar

[3] X. Fang, L. Wu and L. Hu, Adv. Mater. (2010)

Google Scholar

[4] T. Kang, J. Sung, W. Shim, H. Moon, J. Cho, Y. Jo, W. Lee and B. Kim, J. Phy. Chem. C. 113 (2009) 5352-5357.

Google Scholar

[5] D. Eder, Chemical Reviews. 110 (2010) 1348-1385.

Google Scholar

[6] J. Y. Moon, H. S. Lee, Y. Y. Kim, H. K. Cho and H. S. Kim, Thin Solid Films. 518 (2009) 1230-1233.

Google Scholar

[7] T. Fujii, Y. Hishinuma, T. Mita and T. Arakawa, Solid State Communications. 149 (2009) 1799-1802.

DOI: 10.1016/j.ssc.2009.07.021

Google Scholar

[8] W. Shim, J. Ham, K.-i. Lee, W. Y. Jeung, M. Johnson and W. Lee, Nano Letters. 9 (2008) 18-22.

Google Scholar

[9] J.-H. Shen, S.-W. Yeh, H.-L. Huang and D. Gan, Scripta Materialia. 61 (2009) 785-788.

Google Scholar

[10] E. Mirica, G. Kowach and H. Du, Crystal Growth & Design. 4 (2003) 157-159.

Google Scholar

[11] S. Janbroers, T. R. de Kruijff, Q. Xu, P .J. Kooyman and H. W. Zandbergen, Ultramicroscopy. 109 (2009) 1105-1109.

DOI: 10.1016/j.ultramic.2009.04.001

Google Scholar

[12] C. J. Barrelet, Y. Wu, D. C. Bell and C. M. Lieber, J. Am. Chem. Soc. 125 (2003) 11498-11499.

Google Scholar

[13] J. J. Vittal and M. T. Ng, Accounts of Chemical Research. 39 (2006) 869-877.

Google Scholar

[14] T. Kubo, T. Isobe and M. Senna, J. Lumin. 99 (2002) 39-45.

Google Scholar

[15] Y. Jiang, X. M. Meng, J. Liu, Z. Y. Xie, C. S. Lee and S. T. Lee, Adv. Mater. 15 (2003) 323-327.

Google Scholar

[16] D. C. Harris, Infrared Phys. Techn. 39 (1998) 185-201.

Google Scholar

[17] Y. C. Zhu, Y. Bando, D. F. Xue and D. Golberg, Adv. Mater. 16 (2004) 831-834.

Google Scholar

[18] G. A. Khitrov and G. F. Strouse, J. Am. Chem. Soc. 125 (2003) 10465-10469.

Google Scholar

[19] Y. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis and J. Q. Xiao, J. Am. Chem. Soc. 126 (2004) 6874-6875.

Google Scholar

[20] S. Banerji, R. E. Byrne and S. E. Livingstone, Transition Met. Chem. 7 (1982) 5-10.

Google Scholar