Ultrasonic-Assisted Preparation, Characterization and Antibacterial Activity of β-Chitosan from Squid Pens

Article Preview

Abstract:

β-chitosan preparation from squid pens was carried out using aqueous NaOH with the ultrasonic assistance. Single factor experiments and L9 (34) orthogonal experiments were used to investigate the effect of three parameters (reaction time, concentration of NaOH and reaction temperature) on deacetylation of β-chitin. The optimal conditions for deacetylation of chitin were reaction temperature 80°C, reaction time 2 h and concentration of NaOH 50%. The optimal conditions allowed deacetylation degree of β-chitin from 71.32% to 92.91%. The β-chitosan from squid pens was confirmed by Fourier transform infrared spectroscopy. The antibacterial activities of the prepared β-chitosans again staphylococcus aureus (S. aureus) and Escherchia coli (E.coli) were then determined and compared by the MIC (minimum inhibitory concentration). Results indicate that β-chitosans with different degrees of deacetylation (DD) possess different antibacterial activity. The growth of S. aureus can be easily inhibited by prepared β-chitosan than E.coli.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

282-287

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Minke and J. Blackwell: Journal of Molecular Biology Vol.120 (1978), p.167

Google Scholar

[2] G.A.F. Roberts, in: Chitin Chemistry (edited by MacMillan Press, London 1992).

Google Scholar

[3] E. Furusaki, Y. Ueno, N. Sakairi, N. Nishi and S. Tokura: Carbohydrate Polymers Vol. 9(1996), p.29

Google Scholar

[4] A. Percot, C.Viton and A. Domard: Biomacromolecules Vol. 4 (2003), p.1380

Google Scholar

[5] K. Kurita, K. Sugita, N. Kodaira, M. Hirakawa and J. Yang: Biomacromolecules Vol.6 (2005), p.1414

Google Scholar

[6] H.Y. Lin and C.C. Chou: Food Research International Vol.37 (2004), p.883.

Google Scholar

[7] M.T. Yen, J.H. Yang and J.L. Mau: Carbohydrate Polymers Vol.75 (2009), p.15

Google Scholar

[8] M.N.V.R Kumar: Reactive & Functional Polymers Vol.46 (2000), p.1

Google Scholar

[9] K.V. H. Prashanth and R.N. Tharanathan: Trends in Food Science & Technology Vol.18 (2007), p.117

Google Scholar

[10] R. L. Lavall, O. B.G. Assis and S.P. Campana-Filho: Bioresource Technology Vol.98 (2007), p.2465

Google Scholar

[11] Domard. A Chaussard: Biomacromolecules Vol.5 (2004), p.559

Google Scholar

[12] N. A. Dhas and K. S. Suslick: Journal of the American Chemical Society Vol.127 (2005), p.2368

Google Scholar

[13] S. H. Zhao, X. M. Xu, L. Zheng and H. Liu: Ultrasonics Sonochemistry Vol.17 (2010), p.685

Google Scholar

[14] M. D. Ould, Q. X. Jiang, W.S. Xia: Food & Machinery Vol.23 (2007), p.18

Google Scholar

[15] R. Lin, S. Jiang, M. Zhang: Chemistry Bulletin Vol.3 (1992), p.39

Google Scholar

[16] W. Wang, S. Q. Bo, S.Q. Li and W. Qin: International Journal of Biological Macromolecules Vol.13 (1991), p.281

Google Scholar

[17] X. Y. Wu, Q.X. Zeng, S. F. Mo and Z. Ruan: Journal of south china University of Technology (Natural Science Edition) Vol.34 (2006), p.58

Google Scholar

[18] M. Rinaudo: Progress in Polymer Science Vol.31 (2006), p.603

Google Scholar

[19] L. F. Qi, Xu. Z. R, Jiang. X, C.H. Hu and X. F. Zou: Carbohydrate Research Vol.339 (2004), p.2693

Google Scholar