Effect of Thickness on GLAD TiO2 Thin Films with Incline Spinning Substrate on Rotating Holder (ISSRH) Technique

Article Preview

Abstract:

The report presents the effects of the thickness on the TiO2 thin films prepared by the GLAD technique with incline spinning substrate on rotating holder (ISSRH) by using the electron beam evaporation. The prepared films were heated at 500 °C for 2 hr in air. The microstructure of films was investigated by UV- visible photometer, X-ray diffraction, XRD and field emission scanning electron microscope, FE-SEM. The results showed the thickness of 10, 50, 100 and 300 nm films exhibited continuity distribution of the crystalline. The crystalline structure evidenced the dominant peak at the 300 nm thickness. GLAD TiO2 films exhibited the columnar growth and porosity. The TiO2 nanostructures showed rutile phase.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

3024-3027

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Robbie, MJ. J. Brett: Vac. Sci. Technology Vol. 15 (1997), p.1460

Google Scholar

[2] K. Robbie, JC. Sit, MJ. J. Brett: Vac. Sci. Technology Vol. 16 (1998), p.1115

Google Scholar

[3] A. Lakhtakia, R. Messier, MJ. Brett, K. Robbie: submitted to Journal of InnovationsMater Research (1996)

Google Scholar

[4] IJ. Hodgkinson, QH. Wu: Appl. Phys. Lett Vol. 74 (1999), p.1794

Google Scholar

[5] IJ. Hodgkinson, QH. Wu: Adv. Mater Vol. 13 (2001), p.889

Google Scholar

[6] K. Kaminska, K. Robbie: Appl. Opt Vol. 43 (2004), p.1570

Google Scholar

[7] HA. Macleod, in: Thin film optical filters, edited by Bristol, volum3 of progress in Philadelphia page 488, Institute of Physics Publishers (2001).

Google Scholar

[8] S. Todorova, D. Popov, E. Dimitrov, D. Dochev, M. Kanev:Vacuum Vol.38 (1988), p.869

DOI: 10.1016/0042-207x(88)90482-4

Google Scholar

[9] M. Shishkov, D. Popov: Vacuum Vol. 42 (1991), p.1005

Google Scholar

[10] T. Seino, Y. Kawakubo, K. Nakajima,M. Kamei: Vacuum Vol. 51 (1998), p.791

Google Scholar

[11] A.Dakka, J.Lafait, C.Sella, S.Berthier, J.C. Martin, M.Maaza: Appl. Opt Vol.39 (2000), p.2745

DOI: 10.1364/ao.39.002745

Google Scholar

[12] A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, Sh.Mirdamadi, K. Katagiri, K. Koumoto: Sci. J. Mater Vol.43 (2008), p.5942

DOI: 10.1007/s10853-008-2872-y

Google Scholar

[13] M.M. Hasan, A.S.M.A. Haseeb, R. Saidur, H.H. Masjiki,M. Hamdi: Appl. Sci Vol. 9 (2009), p.2815

Google Scholar

[14] D.Reyes-Coronado, G. Rodriguez-Gattorno, M.E. Espinosa-Pesqueira,C.Cab, R. de Coss, G. Oskam: Nanotechnology Vol. 19 (2008), p.145605

DOI: 10.1088/0957-4484/19/14/145605

Google Scholar

[15] C.C. Hang, F.H. Wang, C.F. Yang, H.H. Huang, C.Y. Chen, P.C. Hung: Eng. Materials Vol.434 (2010), p.506

Google Scholar