Synthesis of NaY Zeolite Molecular Sieves from Calcined Diatomite

Article Preview

Abstract:

NaY zeolite molecular sieves have been synthesized using diatomite as a main starting material via a hydrothermal method. In this approach, the mixture of diatomite and Na2CO3 in mass ratio of 1.0/1.46 was first calcined at temperature of 830 °C for about 1.5 h. The calcined materials were then dissolved in water to obtain a solution and the composition is 15.1 Na2O : 1 Al2O3 : 11.5 SiO2 : 832 H2O. The solution was used to synthesize NaY zeolite by the crystals seeds (27.76Na2O·1.00Al2O3·25.07SiO2·305.66H2O) via hydrothermal treatment. The hydrothermal temperature is 100 °C and the percentage of added crystal seeds is 10% (volume) relative to calcined materials. The obtained zeolite was identified by X-ray diffraction (XRD), and was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and nitrogen sorption analysis, which showed that a high yield of NaY type with a high crystalinity was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

362-368

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. J. Köroglu, A. Saroglan, M. Tatlıer, et al., Effects of low-temperature gel ageing on the synthesis of zeolite Y at different alkalinities. J. Crystal Growth 241 (2002) 481-488.

DOI: 10.1016/s0022-0248(02)01321-0

Google Scholar

[2] B. Wang, H. Z. Ma, Factors affecting the synthesis of microsized NaY zeolite, Microporous and Mesoporous Materials, Micropor. Mesopor. Mater. 25 (1998) 131-136.

DOI: 10.1016/s1387-1811(98)00195-4

Google Scholar

[3] H. Höller, U. Wirsching, Zeolites formation from fly ash. Fortschr Mineral. 63 (1985) 21- 43.

Google Scholar

[4] G. Biswajit, D. C. Agrawal, S. Bhatia, Synthesis of zeolite A from calcined diatomaceous clay: optimization Ind. Eng. Chem. Res. 33 (1994) 2107-2110.

DOI: 10.1021/ie00033a013

Google Scholar

[5] N. Burriesci, M. L. Crisafulli, L. M. Saija, et al., Hydrothermal synthesis of zeolites from rhyolitic pumice of different geological origins, Mater. Lett. 2 (1983) 74-78.

DOI: 10.1016/0167-577x(83)90038-1

Google Scholar

[6] U. Barth-Wirshing, H. Holler, D. Klammer, et al.,Synthetic zeolites formed from expanded perlite: type, formation conditions and properties, Mineral. Petrol. 48 (1993) 275-294.

DOI: 10.1007/bf01163104

Google Scholar

[7] H. W. Ma, Z. M. Bai, W. J. Wang, et al.,A technique for synthesis of 13X zeolite molecular sieve from calcined potassium feldspar powder, China Patent, (2000)ZL 96 1 20734.5.

Google Scholar

[8] J. Yang, X. G. Ma, H. W. Ma, et al., Synthesis of 13X zeolite and MCM-41 Mesoporous materials and treatment of Cd2+ containing wastewater, Chinese J. Process Eng., 7 (2007) 399.

Google Scholar

[9] S. D. J. Inglethorpe, D. J. Morgan, National conference on "Geologic resources of Thailand: potential for future development", (1992) 213.

Google Scholar

[10] V. Sanhueza, U. Kelm, R. Cid, Synthesis of mordenite from diatomite: a case of zeolite synthesis from natural material, J. Chem. Technol. Biotechnol. 78 (2003) 485-488.

DOI: 10.1002/jctb.801

Google Scholar

[11] Y. Xu, J. W. Zondlo, H. O. Finklea, et al., Electrosorption of uranium on carbon fibers as a means of environmental remediation, Fuel Processing Technol., 68 (2000)189-208.

DOI: 10.1016/s0378-3820(00)00114-4

Google Scholar

[12] V. Sanhueza, U. Kelm, R. Cid, et al., Synthesis of ZSM-5 from diatomite: a case of zeolite synthesis from a natural material, J Chem Technol Biotechnol 79 (2004) 686-690.

DOI: 10.1002/jctb.1022

Google Scholar

[13] T. Wajima, M. Hagaa, K. Kuzawa, H. Ishimoto, et al., Zeolite synthesis from paper sludge ash at low temperature (90o) with addition of diatomite, J. Hazardous Mater. 132 (2006) 244-252.

DOI: 10.1016/j.jhazmat.2005.09.045

Google Scholar

[14] A. Chaisena, K. Rangsriwatananon, Synthesis of sodium zeolites from natural and modified diatomite, Mater. Lett. 59 (2005) 1474-1479.

DOI: 10.1016/j.matlet.2004.10.073

Google Scholar

[15] E. Gunter, F. R. G. Konstanz, Trends Anal. Chem. 8 (1998) 343.

Google Scholar

[16] H. W. Ma, Y. B. Wang, S. D. Miao, et al., A technique for preparation of electronic grade potassium carbonate from potash rocks, China Patent, (2003)No 03100563.2.

Google Scholar

[17] S. D. Miao , Z. M. Liu, H. W. Ma, et al., Synthesis and characterization of mesoporous aluminosilicate molecular sieve from K-feldspar, Micropor. Mesopor. Mater. 83 (2005) 277-282.

DOI: 10.1016/j.micromeso.2005.05.006

Google Scholar

[18] C. Berger, R. Gläser, R. A. Rakoczy, et al., The synthesis of large crystals of zeolite Y re-visited, Micropor. Mesopor. Mater. 83 (2005) 333-344.

DOI: 10.1016/j.micromeso.2005.04.009

Google Scholar

[19] S. Y. Sang, Z. M. Liu, P. Tian, et al., Synthesis of small crystals zeolite NaY, Mater. Lett.60 (2006) 1131-1133.

DOI: 10.1016/j.matlet.2005.10.110

Google Scholar

[20] J. Pires, A. Carvalho, M. B. de Carvalho, Adsorption of volatile organic compounds in Y zeolites and pillared clays, Micropor. Mesopor. Mater. 43 (2001) 277-287.

DOI: 10.1016/s1387-1811(01)00207-4

Google Scholar

[21] S. Babel, T. A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazardous Mater. B97 (2003) 219-243.

DOI: 10.1016/s0304-3894(02)00263-7

Google Scholar