Characterization of SiC Whiskers from Rice Husks in Argon Atmosphere

Article Preview

Abstract:

SiC whiskers were prepared through carbonthermal reduction in two steps. Firstly raw rice husks (RHs) were pyrolysed in a graphite vacuum furnace at 460°C for 2 hours and coked rice husks were pyrolysed at 1400°C in argon atmosphere. Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) was employed to characterize the morphology and phase composition of SiC whiskers. The results show that the diameters of SiC whiskers range in 20-200 nm and their lengths are in the range from hundreds of microns to several millimeters. The whiskers are straight and slightly rough and consist of β-SiC crystals with bamboo-like structure. Vapor-solid (VS) mechanism plays a key role at the early stage of SiC formation and VLS mechanism and vapor phase mechanism of the whiskers are involved during the growth of SiC whiskers.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

376-380

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zhenyu Ryu,Jingtang Zheng, Maozhang Wang, Bijiang Zhang:Carbon Vol 39 (2001),p.(1929)

Google Scholar

[2] R. V. Krishnarao & Y. R. Mahajan:Cerumics International Vol.122 (1996), p.353

Google Scholar

[3] CHOU, C. C. & KO, Y. C. :Journal of Materials Science Letter Vol.5 (1986), p.209

Google Scholar

[4] MILEWSKI, J. V., GAC, F. D., PETROVIC, J. J. & SKAGGS, S. R.: Journal of Materials Science, Vol.20 (1985), p.1160

Google Scholar

[5] ADDAMIANO, A. : Journal of Crystal Growth Vol. 58 (1982), p.617

Google Scholar

[6] YAMADA, K. & TOBISAWA, S.: J. Am. Ceram. Sot. Vol.72 (1989), p.221l

Google Scholar

[7] KRISHNARAO, R. V. & GODKHINDI, M. M. : Journal of Materials Science Vol.27 ( 1992), p.2726

Google Scholar

[8] G. W. Meng, Z. Cui, L. D. Zhang, F.Phillipp: Journal of Crystal Growth Vol.209 (2000), p.801

Google Scholar

[9] C. Ghica, G. Soco, D. Brodoceanu, C. Ristoscua, L. C. Nistor, I. N. Mihailescu , A. Klini ,C. Fotakis :Applied Surface Science Vol.252 (2006), p.4672

DOI: 10.1016/j.apsusc.2005.07.087

Google Scholar

[10] LEE, J. G. & CUTLER, I. B. : Am. Ceram. Sot. Bull.,Vol.54 (1975), p.195

Google Scholar

[11] Guangyi Yang, Renbing Wu, Jianjun Chen, Fangfang Song, Yi Pan:Materials Chemistry and Physics Vol.106 (2007), p.236

Google Scholar

[12] R. V. Krishnarao & Y. R. Mahajan:Ceramics International Vol.22 (1996) ,p.353

Google Scholar

[13] Raghavaratx Venkata Krishnarao. Yashwant Ramchandra Mahajan and Thimmana Jagadish Kumar : Journal of the European Ceramic Society Vol.18 (1998), p.147

Google Scholar

[14] R. V. Krishnarao & J. Subrahmanyam: Ceramics International Vol.22 (1996),p.489

Google Scholar

[15] R. V. KRISHNARAO, M. M. GODKHINDI, M. CHAKRABORTY: Journal of Materials Science Vol.27 (1992),p.1227

Google Scholar

[16] Ajoy Kumar Ray, S.K. Das, L.C. Pathak: Materials Letters Vol.57 (2003), p.1120

Google Scholar

[17] F. J. NARCISO-ROMERO, F. RODRĺGUEZ-REINOSO: Journal of Materials Science Vol.31 (1996),p.779

Google Scholar

[18] V. Martínez, M.F. Valencia, J. Cruz, J.M. Mejía, F. Chejne: Ceramics International Vol.32 (2006), p.896

Google Scholar

[19] G.McMAHON : Journal of Materials Science Vol.26 (1991), p.5661

Google Scholar

[20] F. Li , G. Wen: J Mater Sci Vol.42 (2007), p.4127

Google Scholar

[21] X.K. Li, L. Liu, Y.X. Zhang, Sh.D. Shen, Sh. Ge, L.Ch. Ling : Carbon Vol.39 (2001), p.160

Google Scholar