Selective Methanation of CO over Mesoporous Nano Zirconian Supported Ni Catalysts

Article Preview

Abstract:

Mesoporous nano zirconian was prepared by the self-assembly route using hexadecyltrimethyl ammonium bromide (CTAB) surfactant and employed as support for Nickel catalysts for selective methanation of CO. The CO methanation catalytic performance of the synthesized mesoporous nano zirconia-supported Ni-based catalysts was investigated, and the catalysts were charactered by TG/DSC, BET and XRD techniques. The results showed that, when the Ni loading was under 7.5 wt%, almost all the nickle species were in the form of nanoscale crystallites that finely distributed on the mosoporous nano zirconian surface. These well dispersive nickle species presented unique high activity and selectivity for CO methanation. For all the catalysts studied, the 7.5 wt%Ni/ZrO2 catalyst was the most effective one, which showed a higher than 99% of CO conversion in the CO/CO2 competitive methanation reactions over the temperature interval of 260~280°C, while the CO2 conversion was held at the low level.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

829-834

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Costamagna, S. Srinivasan. J. power and sources. vol. 102 (2001), p.253

Google Scholar

[2] S. Q. Song, P. Tsiakaras. Appl. Catal. B. vol. 63 (2006), p.187

Google Scholar

[3] Q. B. Liu, H. Hong, J. L. Yuan, Jin, G. C. Hong, X.Rui. Appl. Energy. vol. 86 (2009), p.155

Google Scholar

[4] F. V. Stefan Rabe. Appl. Catal. B. vol. 84 (2008), p.827

Google Scholar

[5] T. J. Huang, M. C. Huang. Chem. Eng. J. vol. 145 (2008), p.149

Google Scholar

[6] S. Gamburzev, A. J. Appleby. J. Power Sources. vol. 107 (2002), p.5

Google Scholar

[7] L. T. David, Z. I. önsan. catal. reviews. vol. 43 (2001), p.31

Google Scholar

[8] C. P. Huang, R. C. Jiang, M. Elbaccouch, N. Muradov, J. M. Fenton. J. Power Sources. vol. 162 (2006),p.563

Google Scholar

[9] D. L. Trimm. Appl. Catal. A. vol. 296 (2005), p.1

Google Scholar

[10] H. B. Zou, X. F. Dong, W. M. Lin. Appl. Surf. Sci.. vol. 253 (2006), p.2893

Google Scholar

[11] X. R. Chen, H. B. Zou, S. Z. Chen, W. M. Lin. J. Natural Gas Chemistry. vol. 16 (2007), p.409

Google Scholar

[12] Y. Q. Huang, A. Q. Wang, L. Li, et al. J. Catal. vol. 255(2008), p.144

Google Scholar

[13] R. A. Dagle, Y. Wang, G. Xia, J. J.Strohm, J.Holladay, D. R. Palo. Appl. Catal A. vol. 326 (2007), p.213

Google Scholar

[14] M. Krämer, M. Duisberg, K. Stöwe, et al. J. Catal. vol. 251 (2007), p.410

Google Scholar

[15] K. Yaccato, C. Ray, H. Alfred, L. Andreas, S. Peter, F. V. J.Anthony, T. Howard, W. Henry, K. G. Robert, B. Chris. Appl. Catal. A. vol. 296 (2005), p.30

Google Scholar

[16] S. Takenaka, T. Shimizu, K. Otsuka. International J. Hydrogen Energy. vol. 29 (2004), p.1065

Google Scholar

[17] Q. H. Liu, X. F. Dong, X. M. Mo, W. M. Lin. J. Natural Gas Chemistry. vol. 17 (2008), p.268

Google Scholar

[18] J. M. Criado, M. González, M. J. Diánez, L.A. Pérez-Maqueda, J. Málek. J. Phys. and Chem. Solids. vol. 68 (2007), p.824

Google Scholar

[19] B. Kester, E. Zagli, L. Falconer. Appl. Catal. vol. 22(1986 ), p.311

Google Scholar

[20] S. B.Marcelo, I. S Elisabete, M. A Elisabete, A. T.Edson. J. Power Sources. vol. 145 (2005 ), p.50

Google Scholar

[21] S. H. Kim, S. W. Nam, T. H. Lim, H. I. Lee. Appl. Catal. B. vol. 81 (2008), p.97

Google Scholar