Hydrocracking of Di(1-Naphthyl)methane over Acid Solid Catalyst

Article Preview

Abstract:

As a model reaction for coal liquefaction, the hydrocraking of di(1-naphthyl)methane (DNM) was investigated using acid solid catalyst (ASC) under different reaction conditions. The results show that acid solid catalyst selectively catalyzes DNM hydrocraking to give 1-methylnaphthalene and naphthalene, without hydrogenation product. The rate of DNM hydrocraking strongly depended on reaction temperature, reaction time and the catalyst feed, whereas effect of hydrogen pressure was not serious. The effects of acid solid catalyst is to make Car-Calk bond cleavage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

850-853

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Yoshida, K. Tokukashi and Y. Maekawa: Fuel. Vol. 64 (1985), p.890

Google Scholar

[2] L. Artok, O. Erbatur and H.H. Schobert: Fuel Process. Techonol. Vol. 47 (1996), p.153

Google Scholar

[3] K. Kidena, N. Bandoh, S. Murata and M. Nomura: Fuel Process. Technol. Vol. 74 (2001), p.93

Google Scholar

[4] V.M. Akhmedov, S.H. Al-Khowaiter and E. Akhmedov: Applied Catalysis A: General. Vol. 181 (1999), p.51

DOI: 10.1016/s0926-860x(98)00410-4

Google Scholar

[5] S. Murata, M. Nakamura, M. Miura and M. Nomura: Energy &Fuels. Vol. 9 (1995), p.849

Google Scholar

[6] Z.M. Zong and X.Y. Wei: Fuel Process. Technol. Vol. 41(1) (1994), p.79

Google Scholar

[7] E.N. Grigorieva, S.S. Panchenko, V.Yu. Kovrobkov and I.V. Kalechitz: Fuel Process. Technol. Vol. 41 (1994), p.39

Google Scholar

[8] Y. Kamiya, E. Ogata, K. Goto and T. Nomi: Fuel. Vol. 65(3) (1986), p.586

Google Scholar

[9] V.Y. Korobkov, E.K. Aboimova, V.I. Bykov and L.V. Kalechita: Fuel. Vol. 4(2) (1990), p.480

Google Scholar

[10] S. Futamura, S. Koyanagi and Y. Kamiya: Fuel. Vol. 67(5) (1988), p.1436

Google Scholar

[11] X.Y. Wei, N.Z. Hai, Z.M. Zong, Z.S. Lu, X.Y. Chun and X.H. Wang: Energy & Fuels. Vol. 17 (2003), p.652

Google Scholar

[12] X.Y. Wei, E. Ogata, Z.M. Zong, N.Z. Hai and E. Niki: Fuel. Vol. 72 (1993), p.1547

Google Scholar

[13] N.Z. Hai, Z.M. Zong, L.F. Zhang, L.B. Sun, Y. Liu, X.H. Yuan and X.Y. Wei: Energy & Fuels. Vol. 17(1) (2003), p.60

Google Scholar

[14] L.B. Sun, Z.M. Zong, J.H. Kou, L.F. Zhang, Z.H. Ni, G.Y. Yu, H. Chen, X.Y. Wei and C.W. Lee: Energy & Fuels. Vol. 18(5) 2004, p.1500

Google Scholar

[15] K. Shimizu, H. Karamatsu, A. Inaba, A. Suganuma and I. Saito: Fuel. Vol. 74(6) (1995), p.853

Google Scholar

[16] M. Farcasiu and C. Smith: Energy & Fuels. Vol. 5(1) (1991), p.83

Google Scholar

[17] E. Ogata, X.Y. Wei, K. Horie, A. Nishijima, I. Saito and K. Ukegawa: Catalysis Today. Vol. 43 (1998), p.161

DOI: 10.1016/s0920-5861(98)00146-1

Google Scholar

[18] G.A. Olah, M.R. Bruce, E.H. Edelson and A. Husain: Fuel. Vol. 63(10) (1984), p.1432

Google Scholar