Bulk-Quantity Synthesis of Ultralong SnO2 Nanowires and their Application to a Backgated Triode Emission Device

Article Preview

Abstract:

A high yield of ultralong SnO2 nanowires is successfully achieved by a simple thermal evaporation of SnO powders under air ambient. The as-synthesized SnO2 nanobelts are single crystals with rutile structure. A backgated triode device for high-current applications has been developed with beltlike SnO2 field emitters. The devices have confirmed triode operation with low turn-on gate voltage (about 170 V) and stable electron emission with brightness of 30 cd/m2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1088-1091

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Ansari, D. Boroojerdian, S. R. Sainker, R. N. Karekar, R. C. Aiyer and S. K. Kulkarni: Thin Solid Films Vol. 295 (1997), p.271

DOI: 10.1016/s0040-6090(96)09152-3

Google Scholar

[2] P. G. Harrison and M. J. Willet: Nature Vol. 332(1988), p.337.

Google Scholar

[3] S. Ferrere, A. Zaban and B. A. Gsegg: J. Phys. Chem. B Vol.101 (1997), p.4490.

Google Scholar

[4] A. Aoki and H. Sasakura: Jpn. J. Appl. Phys. Vol.9(1970), p.582.

Google Scholar

[5] J. J. Rowlette and H. I. Attia: Proc. Electrochem. Soc. Vol.7 (1987), p.25.

Google Scholar

[6] S. R. Stampfl, Y. Chen, J. A. Dumesis, C. Niu and C.G. Hill: J. Catal. Vol.105 (1987), p.445.

Google Scholar

[7] C. Agashe, M. G. Takwale, B. R. Marathe and V. G. Bhide: Sol. Energy Mater. Vol.17 (1988), p.99.

Google Scholar

[8] P. Olive, E .C. Pereira, E. Longo, J. A. Varella and L. O. D. Bulhoes: J. Electrochem. Soc. Vol.140 (1993), p. L81.

Google Scholar

[9] M. H. Huang, S. Mao, H. Feick, H .Q. Yan, Y. Y. Wu, H. Kind et al.: Science Vol.292(2001), p.1897.

Google Scholar

[10] Z. L. Wang and J. H. Song: Science Vol.312 (2006), p.242.

Google Scholar

[11] Y.Chen, X.H. Wang, S.Erramilli, P.Mohanty and A.Kalinowski: Appl. Phys. Lett. Vol.89 (2006) p.223512.

Google Scholar

[12] Y. Cheng, P. Xiong, L. Fields, J. P. Zheng, R. S. Yang and Z. L. Wang: Appl. Phys. Lett. Vol.89 (2006), p.093114.

Google Scholar

[13] Y. J. Chen, Q. H. Li, Y. X. Liang, T. H. Wang, Q. Zhao and D. P. Yu : Appl. Phys. Lett. Vol. 85(2004), p.56821.

Google Scholar

[14] Q. Wan and T.H. Wang: Chem. Commun. Vol. 30(2005), p.3841.

Google Scholar

[15] Y. J. Chen, L. Nie, X. Y. Xue, Y. G. Wang and T. H. Wang: Appl. Phys. Lett. Vol.88(2006), p.083105.

Google Scholar

[16] Z .R. Dai, Z. W. Pan and Z. L. Wang: J.Am.Chem.Soc. Vol.124 (2002), p.8673.

Google Scholar

[17] Z .R. Dai, J. L. Gole, J .D. Stout and Z. L. Wang: J. Phys. Chem. B Vol.106 (2002), p.1274.

Google Scholar

[18] L. J. Li, F. J. Zong, X. D. Cui, H. L. Ma, X. H. Wu and Q. D. Zhan : Mater Lett Vol. 61(2007) p.4152.

Google Scholar

[19] L. A. Ma, Y. Ye, L. Q. Hu, K. L. Zheng and T. L. Guo: Physica E Vol.40 (2008), p.3127.

Google Scholar

[20] P. Yang and C.M. Lieber: J. Mater. Res. Vol.12 (1997), p.2981.

Google Scholar