Electronic Structures and Optical Properties of CuIn1-XGaXSe2 by First-Principle Calculations

Article Preview

Abstract:

First-principle calculations on the electronic structures and optical properties of CuIn1-xGaxSe2(x=0, 0.25, 0.5, 0.75 and 1) reveal that CuIn1-xGaxSe2 are small band gap materials and the ground state is stabiles from x=0 to 1 while the band-gap of the quaternary compound widen, all of that are in good agreement with the experimental results. We find that the obviously double peak structure of the imaginary of dielectric function centered about from 0.9 to 5.0 while a distinct peak appears at about 2.2eV and a smooth increasing with another peak appearing at about 5.5eV for the different content of Ga appearing in the absorption spectrum, all of which indicate the different band gap for the transition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1304-1308

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.H. Moharrama, M.M. Hafiz, A. Salem, Appl. Surf. Sci. 172 (2001) 61

Google Scholar

[2] J. Muller, J. Nowoczin. H. Schmitt, Thin Solid Films 496 (2006) 364

Google Scholar

[3] J. Feng, B. Xiao, J.C. Chen, C.T. Zhou, Solid State Communications (2009). Doi: 10.1016/j. ssc.2009.05.042

Google Scholar

[4] Z.B. Li, X. Wang, K.L. Yang, Solid State Communications

DOI: 10.1016/j.ssc.2010.06.015

Google Scholar

[5] J.H. Zhang, J. W. Ding, Z.H. Lu, ACTA PHYSICA SINICA. 58 (2009) 1901-1907

Google Scholar

[6] L. Xu, C.Q. Tang, J. Qian, ACTA PHYSICA SINICA.59 (2010) 2721-2727

Google Scholar

[7] A. Rockett, R.W. Birkmire, J. Appl. Phys. 70 (1991) R81–R97

Google Scholar

[8] C. Guillen, J. Herrero, Sol. Energy Mater. 23 (1991) 31–45.

Google Scholar

[9] U. Rau, H.W. Schock, Appl. Phys. A:Mat. Sci. Process. 69 (1999) 131–147.

Google Scholar

[10] A. Miguel, K. Contreras, J. Ramanathan, F. AbuShama, D.L. Hasoon, B.Young, B Egass, R. Noufi, Prog. Photovolt.:Res. Appl. 13 (2005) 209–216.

DOI: 10.1002/pip.626

Google Scholar

[11] J.Olejnıcek, et. al., Sol. Energy Mater. Sol. Cells(2009)

DOI: 10.1016/j.solmat.2009.03.024

Google Scholar

[12] Stampfl, C.; Van de Walle, C.G. Phys. Rev. B, 1999, 59:5521

Google Scholar

[13] S. Li, R. Ahuja, M.W. Barsoum, P. Jean, and B. Johansson. Appl. Phys. Lett. 92, 221907(2009)

Google Scholar

[14] M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, et. al., J. Phys.: Condens, Matter 14 (2002) 2717.

Google Scholar

[15] J.P. Perdew, K. Burke, M. Emzerhof, Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[16] J. Choy, J. Phys. Chem. Solids 52 (2001) 545.

Google Scholar