Comparison and Thermodynamic Analysis of Crystallinity of Noncrosslinking and Crosslinking Fluorinated Acrylate Copolymers Films

Article Preview

Abstract:

In this manuscript two different fluorinated acrylate copolymers films, one was non-crosslinking Stearyl acrylate/2-(perfluorooctyl) ethyl methacrylate (SA/FOEMA) and another was cross-linked SA/2-hydroxyethyl methacrylate(HEMA)/FOEMA/hexamethylene diisocyanate trimers (N3300), were prepared and their crystallinities were investigated by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It can be shown from the XRD results that the value of crystallinities of SA/FOEMA and SA/HEMA/FOEMA/N3300 copolymer were 80.95% and 84.02%, respectively. Based on DSC curves and theoretical thermodynamic analysis , it is indicated that crosslinking can improve crystallinity of copolymer composed of SA and FOEMA.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1391-1395

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. L. Schmidt, R. F. Brady, K. Lam et al.: Langmuir.Vol.20.(2004), p.2830

Google Scholar

[2] E. L. Brantley, G. K. Jennings: Macromolecules.Vol.37.(2004), p.1476

Google Scholar

[3] T. Nishino, Y. Urushihara, M. Meguro et al.: Journal of Colloid and Interface Science. Vol.283.(2005), p.533

Google Scholar

[4] I. J. Park, S. B. Lee, C. K. Choi: Macromolecules.Vol.31.(1998), p.7555

Google Scholar

[5] H. G. Ni, X. F. Wang, W. Zhang et al.: Surface Science.Vol.601.(2007), p.3632

Google Scholar

[6] J. W. Ha, I. J. Park, S. B. Lee et al.: Macromolecules.Vol.35.(2002), p.6811

Google Scholar

[7] J. P. Yang, H. G. Ni, X. F. Wang et al.: Polymer Bulletin.Vol.59.(2007), p.105

Google Scholar

[8] J. G. Wang, G. P. Mao, C. K. Ober et al.: Macromolecules.Vol.30.(1997), p.(1906)

Google Scholar

[9] M. Morita, H. Ogisu, M. Kubo: Journal of Applied Polymer Science.Vol.73.(1999), p.1741

Google Scholar

[10] K. Honda, M. Morita, H. Otsuka et al.: Macromolecules.Vol.38.(2005), p.5699

Google Scholar

[11] S. Saidi, F. Guittard, C. Guimon et al.: Journal of Polymer Science Part a-Polymer Chemistry.Vol.43.(2005), p.3737

Google Scholar

[12] L. Caillier, E. T. de Givenchy, S. Geribaldi et al.: Journal of Materials Chemistry . Vol.18. (2008), p.5382

Google Scholar

[13] K. Li, P. P. Wu, Z. W. Han: Polymer.Vol.43.(2002), p.4079

Google Scholar

[14] R. R. Thomas, D. R. Anton, W. F. Graham et al.: Macromolecules.Vol.30.(1997), p.2883

Google Scholar

[15] D. W. Xue, X. P. Wang, H. G. Ni et al.: Langmuir.Vol.25.(2009), p.2248

Google Scholar

[16] Y. Shibasaki, H. Saitoh, K. Chiba: Journal of Thermal Analysis.Vol.49.(1997), p.115

Google Scholar

[17] M. Matsunaga, T. Suzuki, K. Yamamoto et al.: Macromolecules.Vol.41.(2008), p.5780

Google Scholar

[18] A. Fujimori, S. Kobayashi, H. Hoshizawa et al.: Polymer Engineering and Science. Vol.47.(2007), p.354

Google Scholar

[19] G. de Crevoisier, P. Fabre, L. Leibler et al.: Macromolecules.Vol.35.(2002), p.3880

Google Scholar

[20] C. Y. Lee, J. W. Ha, I. J. Park et al.: Journal of Applied Polymer Science.Vol.86.(2002), p.3702

Google Scholar

[21] W. H. Ming, J. Laven, R. van der Linde: Macromolecules.Vol.33.(2000), p.6886

Google Scholar