A Novel Technique for Preparation of the Fluorescence Sensor Based on Covalent Immobilization of 1-Aminopyrene

Article Preview

Abstract:

A novel technique to covalently immobilize indicator dyes with terminal amino groups for preparing optical sensors is investigated. Au nanoparticles are used as bridges and carriers for anchoring indicator dyes on the surface of a quartz glass slide. 1-Aminopyrene (AP) was employed as an example of indicator dyes and covalently immobilized onto the outmost surface of the glass slide. First, the glass slide was functionalized by (3-mercaptopropyl) trimethoxysilane (MPS) to form a thiol-terminated self-assembled monolayer, where Au nanoparticles were strongly anchored via covalent link. Then, 16-mercaptohexadecanoic acid (MHDA) was self-assembled to bring carboxylic groups onto the surfaces of Au nanoparticles. A further activation by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) converted the carboxylic group into succinimide ester. Finally, the active succinimide ester was reacted with 1-aminopyrene (AP). Thus, AP was covalently immobilized to the glass slide and an AP-immobilized sensor was obtained. The resulting sensor was used to determine rutin based on fluorescence quenching. It showed a linear response toward rutin (R) from 5.0 × 10-7 to 6.0 × 10-4 mol L-1 with a detection limit of 2.0× 10-7 mol L-1. This AP-immobilized sensor has very satisfactory reproducibility, reversibility, rapid response and no dye-leaching.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1442-1447

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. S. Tyson, A. D. Carbaugh, F. Ilhan, J. Santos-Prez and M. A. Meador: Chem. Mater. Vol. 20 (2008), p.6595

Google Scholar

[2] T. S. Pinyayev, C. J. Seliskar and W. R. Heineman: Anal. Chem. Vol. 82 (2010), p.9743

Google Scholar

[3] S. V. Bhosale, S. V. Bhosale, M. B. Kalyankar and S. J. Langford: Org. Lett. Vol. 11 (2009), p.5418

DOI: 10.1021/ol9022722

Google Scholar

[4] M. D. Woodka and V. P. Schnee and M. P. Polcha: Anal. Chem. Vol. 82 (2010), p.9917

Google Scholar

[5] P. Du and S. J. Lippard: Inorg. Chem. Vol. 49 (2010), p.10753

Google Scholar

[6] S. V. Wegner, H. Arslan, M. Sunbul, J. Yin and C. He: J. Am. Chem. Soc. Vol. 132 (2010), p.2567

Google Scholar

[7] A. Mills, A. Lepre, B. R. C. Theobald, E. Slade and B. A. Murrer: Anal. Chem. Vol. 69 (1997), p.2842

Google Scholar

[8] J. N. Demas, B. A. DeGraff and W. Xu: Anal. Chem. Vol. 67 (1995), p.1377

Google Scholar

[9] W. Xu, K. A. Kneas, J. N. Demas and B. A. DeGraff: Anal. Chem. Vol. 68 (1996), p.2605

Google Scholar

[10] A. K. McEvoy, C. M. McDonagh and B. D. MacCraith: Analyst Vol. 121 (1996), p.785

Google Scholar

[11] C. McDonagh, B. D. MacCraith and A. K. McEvoy: Anal. Chem. Vol. 70 (1998), p.45

Google Scholar

[12] H. Hisamoto, Y. Manabe, H. Yanai, H. Tohma, T. Yamada and K. Suzuki: Anal. Chem. Vol. 70 (1998), p.1255

Google Scholar

[13] M. P. Xavier, D. Garcia-Fresnadillo, M. C. Moreno-Bondi and G. Orellana: Anal. Chem. Vol. 70 (1998), p.5184

Google Scholar

[14] G. J. Mohr, N. Tirelli and U. E. Spichiger-Keller: Anal. Chem. Vol. 71 (1999), p.1534

Google Scholar

[15] T. M. Ambrose and M. E. Meyerhoff: Anal. Chim. Acta Vol. 378 (1999), p.119

Google Scholar

[16] C. G. Niu, G. M. Zeng, L. X. Chen, G. L. Shen and R. Q. Yu: Analyst Vol. 129 (2004), p.20

Google Scholar

[17] C. G. Niu, A. L. Guan, G. M. Zeng, Y. G. Liu, G. H. Huang, P. F. Gao and X. Q. Gui: Anal. Chim. Acta Vol. 547 (2005), p.221

Google Scholar

[18] C. G. Niu, Z. Z. Li, X. B. Zhang, W. Q. Lin, G. L. Shen and R. Q. Yu: Anal. Bioanal. Chem. Vol. 372 (2002), p.519

Google Scholar

[19] S. Z. Tan, C. G. Niu, J. H. Jiang, G. L. Shen and R. Q. Yu: Anal. Sci. Vol. 21(2005), p.967

Google Scholar

[20] F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, S.R. Marder and J. W. Perry: J. Am. Chem. Soc. Vol. 125 (2003), p.328

DOI: 10.1021/ja0281277

Google Scholar

[21] K. R. Brown, A. P. Fox and M. J. Natan: J. Am. Chem. Soc. Vol. 118 (1996), p.1154

Google Scholar

[22] K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan: Anal. Chem. Vol. 67 (1995), p.735

Google Scholar

[23] T. Yakushiji, K. Sakai, A. Kikuchi, T. Aoyagi, Y. Sakurai and T. Okano: Anal. Chem. Vol. 71 (1999), p.1125

Google Scholar

[24] J. B. Jia, B. Q. Wang, A. G. Wu, G. J. Cheng, Z. Li and S. J. Dong: Anal. Chem. Vol. 74 (2002), p.2217

Google Scholar

[25] B. Dubertret, M. Calame and A. J. Libchaber: Nat. Biotechnol. Vol. 19 (2001), p.365

Google Scholar

[26] D. J. Maxwell, J. R. Taylor and S. Nie: J. Am. Chem. Soc. Vol. 124 (2002), p.9606

Google Scholar

[27] S. Z. Tan, J. H. Jiang, G. Y. Shen, G. L. Shen and R. Q. Yu: Anal. Chim. Acta Vol. 547 (2005), p.215

Google Scholar