Sc2O3 and Gd2O3 Co-Doped Strontium Zirconate as a New Thermal Barrier Coating Material

Article Preview

Abstract:

An advanced ceramic material of perovskite structure, Sc2O3 (5 mol%) and Gd2O3 (5 mol%) co-doped SrZrO3, was investigated as a material for thermal barrier coating (TBC) applications. Sr(Zr0.9Sc0.05Gd0.05)O2.95 (SZSG) was synthesized using ball milling prior to solid-state sintering, and had a minor second phase of Gd2O3. The material showed good phase stability not only from room temperature to 1400°C, but also at high temperature of 1450°C for a long period, analyzed by DSC and XRD, respectively. The thermal expansion coefficients (TECs) of the sintered bulk SZSG were recorded by a high-temperature dilatometer and revealed a positive influence on phase transitions of SrZrO3 by co-doping Sc2O3 and Gd2O3. The thermal conductivity of SZSG had much lower values in contrast to that of SrZrO3 and Sr(Zr0.8Gd0.2)O2.9 in whole tested temperature range. The good chemical compatibility was observed for SZSG with 8YSZ or Al2O3 powders. All the results revealed that SZSG might be a potential material for TBC applications at higher temperatures compared with 8YSZ.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1457-1462

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. Miller: Surf. Coat. Technol. Vol. 30 (1987), p.1

Google Scholar

[2] R.A. Miller, J.L. Smialek and R.G. Garlick, in: Advances in Ceramics, edited by A.H. Heuer and L.W. Hobbs, Volume 3 of Science and Technology of Zircoina, American Ceramic Society, (1981).

Google Scholar

[3] A.F. Renteria and B. Saruhan: J. Eur. Ceram. Soc. Vol. 26 (2006), p.2249

Google Scholar

[4] R. Gadow and M. Lischka: Surf. Coat. Technol. Vol. 151-152 (2002), p.392

Google Scholar

[5] M. Dietrich, V. Verlotski, R. Vassen and D. Stöver: Mater. Wiss. Werkst. Tech. Vol. 32 (2001), p.669

Google Scholar

[6] K. Matsumoto, Y. Itoh and T. Kameda: Sci. Technol. Adv. Mater. Vol. 4 (2003), p.153

Google Scholar

[7] M. Matsumoto, N. Yamaguchi and H. Matsubara: Scr. Mater. Vol. 50 (2004), p.867

Google Scholar

[8] R. Vassen, X. Cao, F. Tietz, D. Basu and D. Stöver: J. Am. Ceram. Soc. Vol. 83 (2000), p. (2023)

Google Scholar

[9] B. Saruhan, P. Francois, K. Fritscher and U. Schulz: Surf. Coat. Technol. Vol. 182 (2004), p.175

Google Scholar

[10] X. Cao, R. Vassen,W. Fischer, F. Tietz, W. Jungen and D. Stöver: Adv. Mater. Vol. 15 (2003), p.1438

Google Scholar

[11] D.R. Clarke: Surf. Coat. Technol. Vol. 163-164 (2003), p.67

Google Scholar

[12] B. Heimberg, W. Beele, K. Kempter, U. Bast, T. Haubold, M. Hoffmann, A. Endriss, P. Greil, C. Hong, F. Aldinger and H. Seifert, U.S. patent 6,602,553 B2. (2003)

Google Scholar

[13] T. Noguchi, T. Okubo and O. Yonemochi: J. Am. Ceram. Soc. Vol. 52 (1969), p.178

Google Scholar

[14] C.J. Howard, K.S. Knight, B.J. Kennedy and E.H. Kisi: J. Phys. Condens. Matter Vol. 12 (2000), p. L677

Google Scholar

[15] Y. Zhao and D.J. Weidner: Phys. Chem. Minerals Vol. 18 (1991), p.294

Google Scholar

[16] D. Ligny and P. Richet: Phys. Rev. B Vol. 53 (1996), p.3013

Google Scholar

[17] R. Morrell: Handbook of Properties of Technical and Engineering Ceramics-Part 1 (Her Majesty's Stationery Office, London, 1989).

Google Scholar

[18] S. Yamanaka, K. Kurosaki, T. Oyama, H. Muta, and M. Uno: J. Am. Ceram. Soc. Vol. 88 (2005), p.1496

Google Scholar

[19] W. Ma, D. Mack, R. Vassen and D. Stöver: J. Am. Ceram. Soc. Vol. 91 (2008), p.2630

Google Scholar

[20] S. Sodeoka, M. Suzuki, T. Inoue, K. Ueno and S. Oki, in: Thermal spray: Practical Solutions for Engineering Problems, proceedings of the 9th National Thermal Spray Conference, edited by C.C. Berndt, ASM International, (1996).

DOI: 10.31399/asm.cp.itsc1996p0295

Google Scholar