[1]
A. Hilmi, J.H.T. Luong, A.-L. Nguyen, Determination of explosives in soil and ground water by liquid chromatography-amperometric detection, J. Chromatogr. A Vol. 844 (1999) p.97
DOI: 10.1016/s0021-9673(99)00392-1
Google Scholar
[2]
S.F. Patil, S.T. Lonkar, Determination of benzene, aniline and nitrobenzene in workplace air: a comparison of active and passive sampling, J. Chromatogr. A Vol. 688 (1994) p.189
DOI: 10.1016/0021-9673(94)00762-4
Google Scholar
[3]
C. Liu, H. Cao, Y. Li, Y. Zhang, Gold nanoparticles / multi-wall carbon nanotubes modified pyrolytic graphite electrode as an electrochemical sensor for nitrobenzene determination, J. New Mat.Electrochem. Syst. Vol. 9 (2006) p.139
Google Scholar
[4]
G.J. Atwell, S. Yang, F.B. Pruijn, S.M. Pullen, A. Hogg, A.V. Patterson, W.R. Wilson, W.A. Denny, Synthesis and Structure-Activity Relationships for 2,4-Dinitrobenzamide-5-mustards as Prodrugs for the Escherichia coli nfsB Nitroreductase in Gene Therapy, J. Med. Chem. Vol.50 (2007) p.1197
DOI: 10.1021/jm061062o
Google Scholar
[5]
C. Berne, L. Betancor, H.R. Luckarift, J.C. Spain, Application of a Microfluidic Reactor for Screening Cancer Prodrug Activation Using Silica-Immobilized Nitrobenzene Nitroreductase, Biomacromolecules Vol.7 (2006) p.2631
DOI: 10.1021/bm060166d
Google Scholar
[6]
Z. Naal, J.-H. Park, S. Bernhard, J.P. Shapleigh, C.A. Batt, H.D. Abruña, Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion, Anal. Chem. Vol. 74 (2002) p.140
DOI: 10.1021/ac010596o
Google Scholar
[7]
C.A. Haynes, R.L. Koder, A.-F. Miller, D.W. Rodgers, Structures of nitroreductase in three states, J. Biol. Chem. Vol. 277 (2002) p.11513
DOI: 10.1074/jbc.m111334200
Google Scholar
[8]
A.J. Bard, L.R. Faulkner, Electrochemical Methods - Fundamentals and Applications, Second ed., Wiley, New York, 2001.
Google Scholar
[9]
X. Cheng, Z.-D. Feng, G.-F. Luo, Effect of potential steps on porous silicon formation, Electrochim. Acta Vol.48 (2003) p.497
DOI: 10.1016/s0013-4686(02)00716-8
Google Scholar
[10]
K. Xu, L. Zhu, Y. Wu, H. Tang, An improved structure model to explain variations of electric properties of polyaniline film in the reduction process by using double potential step technique, Electrochim. Acta Vol.51 (2006) p.3986
DOI: 10.1016/j.electacta.2005.11.013
Google Scholar
[11]
M. Yagi, M. Takahashi, M. Teraguchi, T. Kaneko, T. Aoki, Entropy effect on physical displacement of redox molecules in a nafion film as studied by double potential-step chronoabsorptometry, J. Phys. Chem. B. Vol.107 (2003) p.12667
DOI: 10.1021/jp036146c
Google Scholar
[12]
H. Ikeuchi, M. Kanakubo, Determination of diffusion coefficients of the electrode reaction products by the double potential step chronoamperometry at small disk electrodes, J. Electroanal. Chem. Vol.493 (2000) p.93
DOI: 10.1016/s0022-0728(00)00327-2
Google Scholar
[13]
O.V. Klymenko, R.G. Evans, C. Hardacre, I.B. Svir, R.G. Compton, Double potential step chronoamperometry at microdisk electrodes: simulating the case of unequal diffusion coefficients, J. Electroanal. Chem. Vol.571 (2004) p.211
DOI: 10.1016/j.jelechem.2004.05.012
Google Scholar
[14]
C. Montella, Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: Part I. Influence of charge transfer kinetics and ohmic potential drop, J. Electroanal. Chem. Vol.518 (2002) p.61
DOI: 10.1016/s0022-0728(01)00691-x
Google Scholar
[15]
M. Lopez-Tenes, M.M. Moreno, C. Serna, A. Molina, Study of an EE mechanism using double potential step techniques, J. Electroanal. Chem. Vol.528 (2002) p.159
DOI: 10.1016/s0022-0728(02)00904-x
Google Scholar
[16]
A. Molina, M. Lopez-Tenes, C. Serna, M.M. Moreno, M. Rueda, Study of multistep electrode processes in triple potential step techniques at spherical electrodes, Electrochem. Commun. Vol.7 (2005) p.751
DOI: 10.1016/j.elecom.2005.04.032
Google Scholar
[17]
C. Serna, A. Molina, M.M. Moreno, M. Lopez-Tenes, Study of multistep electrode processes in double potential step techniques at spherical electrodes, J. Electroanal. Chem. Vol.546 (2003) p.97
DOI: 10.1016/s0022-0728(03)00155-4
Google Scholar
[18]
J.C. Miller, J.N. Miller, Statistics for analytical chemistry, Ellis Horwood Limited, Chichester, 1988.
Google Scholar