The Continuous Plating of Ni-Cr Composite Coatings and TiO2 Nano-Modify

Article Preview

Abstract:

Ni-Cr films were electrodeposited from a nickel sulfate, chromium chloride and chromium sulfate bath. To avoid the poor adhesion and bad surface morphology of the secondary-co-deposition of Ni-Cr alloy films, H2O and DMF (volume ratio as 1:1) is used as solvent. Along with the alloy films growing thick, their surface apertures become larger correspondingly, which causes the hardness and corrosion resistance of the films becoming poor. For comparison, nanocrystalline Ni-Cr films with TiO2 nanoparticles were obtained on the same condition. TiO2 nanoparticles have an average size of 40 nm. The corrosion resistance of the Ni-Cr composite coatings were comparatively evaluated by salt spray test. It is found that the incorporation of TiO2 particles enhances the microhardness and corrosion resistance of the coatings. The reason is that the nano-TiO2 particles in the deposit effectively reduce the size of Ni and Cr crystals through grain refinement-strengthening and dispersion-strengthening effect. The observation results of scanning electron microscopy (SEM) indicated that the Ni-Cr films without dispersions of TiO2 nanoparticles exhibited numerous large and deep crackles, however, the crackles of nano-TiO2 Ni-Cr film distinctly became less.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

227-231

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Zeiger, M. Schneider, D. Scharnwber, H. Worch, Nanostruct. Mater. 6 (1995), 1013.

Google Scholar

[2] S.J. Thorpe, B. Ramaswami, A.T. Aust, J. Electrochem. Soc. 135 (1998), 2162.

Google Scholar

[3] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Progr. Mater. Sci. 45 (2000), 103.

Google Scholar

[4] R. Mishra, R. Balasubramaniam, Corros. Sci. 46 (2004), 3019.

Google Scholar

[5] Guo-gang Zhao, Yue-bo Zhou, Hai-jun Zhang. Trans. Nonferrous Met.Soc. 19(2009), 319-323.

Google Scholar

[6] McBee C. L Klmer J. Elctrochem. Acta. 17(1972), 1337

Google Scholar

[7] Guo-bin Li, Rong-hua Peng,Song-jiang Ma. Materials Protection. 37(2004), 22-24.

Google Scholar

[8] Qiu-yuan Feng, Ting-ju Li, Hong-yuan Yue, Fu-dong Bai, Jun-ze Jin. Applied Surface Science. 254(2008), 2262-2268.

Google Scholar

[9] Qu N. S., Zhu D., Chan K. C. Scripta Materialia. 54(2006), 1421-1425.

Google Scholar

[10] Gyftou P., Stroumbouli M., Pavlatou E. A., Asimidis P., Spyrellis N. Electrochimica Acta. 50(2005), 4544-4550.

DOI: 10.1016/j.electacta.2004.10.090

Google Scholar

[11] Lekka M., Kouloumbin., Gajo M., Bonora P. L. Electrochimica Acta. 50(2005), 4551-4556.

DOI: 10.1016/j.electacta.2004.11.067

Google Scholar

[12] Srivastava M., William Grips V. K., Rajam K. S. Applied Surface Science. 253(8)(2007), 3814-3824.

Google Scholar

[13] Muller B., Ferkel H. Nanostruct Mater. 10(1998), 1285-1289.

Google Scholar

[14] Wu G., Lin., Zhou D. R., Mitsuo K. Sur Coat Tech. 176(2004), 157-164.

Google Scholar

[15] Hou K. H., Ger M. D., Wang L. M., Ke S. T. Wear. 253(2002), 994-1003.

Google Scholar

[16] Yu-jun Xue, Xian-zhao Jia, Yan-wei Zhou, Wei Ma, Ji-shun Li. Sur Coat Tech. 200(20/21) (2005), 5677-5687.

Google Scholar