The Influence of Sinterng Temperature on the Phase, Microstructure and Textual Properties of Hollow Hydroxyapatite Microspheres

Article Preview

Abstract:

A simple method to prepare hollow hydroxyapatite (HAP) microspheres with mespores on the surfaces is performed using a precipitation method assisted with Li2O-CaO-B2O3(LCB) glass fabrication process. This research is concerned with the effect of sintering temperature on the microstructure evolution, phase purity, surface morphology, specific surface area, and porosity after sintering process. The microspheres were sintered in air atmosphere at temperatures ranging from 500 to 900 °C. The starting hollow HAP microspheres and the sintered specimens were characterized by scanning electron microscope, X-ray diffractometer, specific surface area analyzer, and Hg porosimetry, respectively. The as-prepared microspheres consisted of calcium deficient hydroxyapatite. The results showed that the as-prepared hollow HAP microspheres had the highest specific surface areas, and the biggest total pore volume. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2~40 nm. The specific surface area and total pore volume of hollow HAP microspheres decreased with increasing sintering temperature. Whereas the mean pore size increased with increasing sintering temperature. It showed that at 700°C, Ca-dHAP decomposes into a biphasic mixture of HAP and β-calcium phosphate(TCP).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2274-2279

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.Caruso , A.Rachel and H. Möhwald: Science Vol. 282(1998), p.1111.

Google Scholar

[2] M.W. Chang, E. Stride, and M. Edirisinghe: Langmuir Vol. 26(2010), p.5115.

Google Scholar

[3] K.J.C. Van Bommel, J.H. Jung, and S. Shinkai: Adv Mater Vol. 13(2001), p.1472.

Google Scholar

[4] M.K. Park, K. Onishi, J. Locklin, F.Caruso, and R.C. Advincula: Langmuir Vol. 19(2003), p.8550.

Google Scholar

[5] S. Sadasivan, and G.B. Sukhorukov: J Colloid Interface Sci Vol. 304(2006), p.437.

Google Scholar

[6] F. Caruso, M. Spasova, V. Salgueiriño-Maceira, and L.M. Liz-Marzán: Adv Mater Vol. 13(2001),p.1090.

DOI: 10.1002/1521-4095(200107)13:14<1090::aid-adma1090>3.0.co;2-h

Google Scholar

[7] H. Zhang, X.J. Ju, R.Xie, C.J. Cheng, P.W. Ren, and L.Y. Chu: J Colloid Interface Sci Vol. 336 (2009), p.235.

Google Scholar

[8] Y.F. Zhu, D.H. Fan, and W.Z. Shen: Langmuir Vol. 24(2008), p.11131

Google Scholar

[9] Y.C. Cao, B. You, and L.M. Wu: Langmuir Vol. 26(2010), p.6115

Google Scholar

[10] G. Bertand, P. Roy, C. Filiatre, and C. Coddet: Chem Eng Sci, Vol.60(2005), p.95

Google Scholar

[11] P. Luo, and T.G. Nieh: Biomaterials Vol. 17(1996), p.(1959)

Google Scholar

[12] L. L Hench: J. Am. Ceram. Soc. Vol.74(1991), p.1487

Google Scholar

[13] M.S. Djošić, V.B. Mišković-Stanković, S. Milonjić, Z.M. Kačarević-Popović, N. Bibić, and J. Stojanović: Mater. Chem. Phys. Vol. (111)2008, p.137

DOI: 10.1016/j.matchemphys.2008.03.045

Google Scholar

[14] X. Li, C.A. Van Blitterswijk, Q. Feng, F. Cui,and F.Watari:Biomaterials Vol. 29 (2008), p.3306

Google Scholar

[15] N.Y. Mostafa: Mater Chem Phys Vol. 94(2005), p.333

Google Scholar

[16] P.P. Yang, Z.W. Quan, C.X. Li, X.J. Kang, H.Z. Lian, and J. Lin: Biomaterials Vol. 29 (2008), p.4341.

Google Scholar

[17] J.X. Zhang, M. Fujiwara, Q. Xu, Y.C. Zhu, M. Iwasa, and D.L. Jiang: Micropor Mesopor. Mater. Vol. 111(2008), p.411

Google Scholar

[18] Y.P. Guo, Y. Zhou, D.C. Jia, and H.X. Tang:Micropor Mesopor. Mater. Vol. 118(2009), p.480.

Google Scholar

[19] A.J. Wang, Y.P. Lu, R.F. Zhu, S.T. Li, G.Y. Xiao, G.F. Zhao, and W.H. Xu: J Biomed Mater Res A, Vol. 87(2008), p.557

Google Scholar

[20] X.Y. Guo, and P. Xiao: J Eur Ceram Soc Vol. 26(2006), p.3383

Google Scholar

[21] Y.C. Wang, W.H. Huang, A.H. Yao, D.P. Wang, J. Zhou, and Q. Wang: Rare Metal Mater Eng. Accepted

Google Scholar

[22] LEl Hammari, H Merroun, T Coradin, S Cassaignon, A Laghzizil, and A. Saoiabi: Mater Chem Phys Vol. 104(2007), p.448

DOI: 10.1016/j.matchemphys.2007.04.002

Google Scholar

[23] Ishikawa K, Ducheyne P, and Radin S: J. Mater. Sci : Mater. Med. Vol. 4(1993), p.165.

Google Scholar

[24] S.A. Hutchens, R.S. Benson, B.R. Evans, H.M. O' Neill, and C.J. Rawn: Biomaterials, Vol. 27(2006) p.4661

Google Scholar

[25] S.Raynaud, E.Champion, D. Bernache-Assollant, and P.Thomas: Biomaterials, Vol. 23 (2002), p.1065

Google Scholar

[26] 43. N. Patel, I.R. Glbson, S. Ke, S.M. Best, and W. Bonfield: J Mater Sci: Mater Med Vol. 12(2001) p.181

Google Scholar

[27] W.Xia, and J. Chang : J Control Release Vol. 110( 2006)p.522

Google Scholar

[28] Y.Yamashita, A. Uchida, T. Yamakawa, Y. Shinto, N. Araki, and K. Kato: Int Orthop Vol. 22(1998) p.247.

Google Scholar