Low Temperature Method for Enhancing Ferroelectric Thin Films in Non-Volatile Random Access Memory Devices

Article Preview

Abstract:

In this study, the electrical properties of as-deposited Sr0.4Ba0.6Nb2O6 (SBN) ferroelectric thin films on SiO2/Si(100) substrates were improved by low temperature supercritical carbon dioxide fluid (SCF) process treatment. The as-deposited SBN ferroelectric thin films were treated by SCF process which mixed with pure H2O and propyl alcohol. After SCF process treatment, the memory windows increased in C-V curves, and the passivation of oxygen vacancy and defect in leakage current density curves were obtained. In addition, the improvement properties of as-deposited SBN thin films after SCF process treatment were found by XPS, C-V, and J-E measurement. Finally, the mechanism concerning the dependence of electrical properties of the SBN ferroelectric thin films on the SCF process was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2628-2631

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Orgiani, R. Ciancio, A. Galdi, S. Amoruso, and L. Maritato, Appl. Phys. Lett. 96 (2010) 032501.

DOI: 10.1063/1.3292588

Google Scholar

[2] W. Lim, E. A. Douglas, D. P. Norton, S. J. Pearton, F. Ren, Y. W. Heo, S. Y. Son, and J. H. Yuh, Appl. Phys. Lett. 96, (2010) 053510.

DOI: 10.1063/1.3309753

Google Scholar

[3] D. Y. Wang, S. Li, H. L. W. Chan, and C. L. Choy, Appl. Phys. Lett. 96, (2010) 061905.

Google Scholar

[4] C. C. Lin and C. C. Lee, J. Electrochem. Soc., 157, 2, (2010) A230.

Google Scholar

[5] K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, J. Electrochem. Soc., 157, 3, (2010) J92.

Google Scholar

[6] N. C. Su, S. J. Wang, and Albert Chin, Electrochem. Solid-State Lett., 13, 1, (2010) H8.

Google Scholar

[7] O. Tuna, Y. Selamet, G. Aygun and L. Ozyuzer, J. Phys. D, 43 (2010) 055402.

Google Scholar

[8] N. Sano, M. Sekiya, M. Hara, A. Kohno, and T. Sameshima, IEEE Electron Device Lett. 16, 157 (1995).

Google Scholar

[8] T. Sameshima and M. Satoh, Jpn. J. Appl. Phys., Part 2 36, L687 (1997).

Google Scholar

[9] P. T. Liu, T. C. Tasi, and P. Y. Yang, Appl. Phys. Lett. 90, 223101 (2007).

Google Scholar

[10] C. T. Tsai, T. C. Chang, P. T. Liu, P. Y. Yang, Y. C. Kuoand, K. T. Kin, P. L. Chang, and F. S. Huang, Appl. Phys. Lett. 91, 012109 (2007).

Google Scholar

[11] C. C. Leu, L. R. Yao, C. P. Hsu, and C. T. Hu, J. Electrochem. Soc., 157, 3, (2010) G85.

Google Scholar

[12] K. H. Chen, Y. C. Chen, C. F. Yang, and T. C. Chang, J. Phys. Chem. Solids, vol. 69, (2008) 461.

Google Scholar

[13] C. F. Yang, K. H. Chen, Y. C. Chen, and T. C. Chang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54 (2007) 1726.

Google Scholar

[14] C. F. Yang, K. H. Chen, Y. C. Chen, and T. C. Chang, Appl. Phys. A, 90 (2008) 329.

Google Scholar

[15] K. H. Chen, Y. C. Chen, Z. S. Chen, C. F. Yang, and T. C. Chang, Appl. Phys. A, 89 (2007) 533.

Google Scholar

[16] Xu, Y., Ferroelectric Materials and Their Applications. Elsevier Science Publishers, (1991). Figure 1. The metal-insulator-insulator-semiconductor (MFIS) capacitor structure. Figure 2. XRD patterns of as-deposited SBN thin films for different substrate temperature. Figure.3. The surface observation of the as-deposited SBN thin films. Figure 4. The AFM morphology of the as-deposited SBN thin films. Figure 5. The C-V curves of as-deposited SBN thin films after SCF treatment. Figure 6. The leakage current density curves of as-deposited SBN thin films after SCF treatment. Figure 7. XPS spectra of O 1s energy levels of as-deposited SBN thin films after SCF treatment.

DOI: 10.1080/00150190490456727

Google Scholar