Deformation Mechanism of Diamond Nanocutting Single-Crystal Copper Using Molecular Dynamics Simulatio

Article Preview

Abstract:

To study the removal mechanism of materials during nano cutting, molecular dynamics method is adopted to simulate single crystal copper nanomachining processes, and subsurface defects evolvements and chip forming regulation are analyzed by revised centro-symmetry parameter method and the ratios of the tangential cutting force and the normal cutting force. The results show that there are different defects under different cutting depths. When cutting depths is shallower, there are dislocation loop nucleation in the subsurface of the workpiece beneath the tool; however, when the cutting depths is deeper, there are dislocations nucleation and slipping along {101} plane and (111) plane. In addition, both tangential cutting force and the normal cutting force decrease as the cutting depths decreasing. When the ratios of the normal cutting force and the tangential cutting force is below 0.9, the chip will be formed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2775-2778

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.H. Fang, C.I Weng: Nanotechnology Vol. 11 (2000), p.148

Google Scholar

[2] Y.Y. Ye, R. Biswas, J.R. Morris, A. Bastawros, A. Chandra: Nanotechnology Vol. 14 (2003), p.390

Google Scholar

[3] R. Komanduri, N. Chandrasekaran, L.M. Raff: Phys. Rev. B Vol. 6 (2000), p.14007

Google Scholar

[4] Y.S. Kim, S.H. Yang, C.I. Kim, S.S. Lee: Mater. Sci. Forum Vol. 426–432 (2003), p.2243

Google Scholar

[5] D. Mulliah, S.D. Kenny, D. Smith, C.F. Sanz-Navarro: Nanotechnology Vol. 15 (2004), p.243

Google Scholar

[6] D. Mulliah, S.D. Kenny, D. Smith: Phys. Rev. B Vol., 69 (2004), p.205407

Google Scholar

[7] M.B .Cai, X.P Li, M. Rahman: Int. J. Mach. Tool Manu Vol. 47 (2007) p.75

Google Scholar

[8] J.X. Chen, Y.C. Liang, Q.S. Bai, Y.L. Tang, M.J. Chen: J. Comput. Theor. Nanosci Vol. 5 (2008), p.1485

Google Scholar

[9] Y.C. Liang, J.X. Chen, M.J. Chen, Y.L. Tang, Q.S. Bai: Comput. Mater. Sci Vol. 43(2008), p.1140

Google Scholar

[10] J.X. Chen, Y.C. Liang, M.J. Chen, Y.L. Tang and Q.S. Bai, A study of the subsurface damaged layers in nanoscratching process, Int. J. Abras. Technol Vol. 2(4) (2009), p.368

DOI: 10.1504/ijat.2009.029095

Google Scholar

[11] R.A. Johnson, Analytic nearest-neighbor model for fcc metals, Phys. Rev. B Vol. 37 (1988), p.3924

DOI: 10.1103/physrevb.37.3924

Google Scholar

[12] R.A. Johnson, Alloy models with the embedded-atom method, Phys. Rev. B Vol. 39 (1989), p.12554

Google Scholar

[13] J.X. Chen, Y.C. Liang, L.Q. Wang, M.J. Chen, Z. Tong, W.Q. Chen: Proceedings of SPIE Vol. 7655 (2010), p. 76550J-6

Google Scholar