Preparation and Properties of Sulfonated Polyimide Proton Conductive Membrane for Vanadium Redox Flow Battery

Article Preview

Abstract:

A series of sulfonated polyimides (SPIs) were synthesized by 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA), 2,2′-benzidinedisulfonic acid (BDSA) and 4,4′- diaminodiphenyl ether (ODA) in m-cresol. The sulfonation degree of SPI was controlled through the ratio of sulfonated diamine to the non-sulfonated diamine, and the SPI membranes were prepared by a casting method. The chemical structures of SPI membranes were characterized by FT-IR. The properties of obtained SPI membranes were investigated, such as water uptake, ion exchange capacity, proton conductivity and permeability of vanadium ion. The proton conductivities of SPI membranes are ranged from 0.012 to 0.051 S/cm, and the permeabilities of vanadium ion are one or two orders of magnitude less than that of Nafion® 117 (1.80×10-6cm2/min ). Experimental results showed that SPI membranes are potential candidates for vanadium redox flow battery.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2779-2784

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Skyllas-Kazacos and F. Grossmith: J. Electrochem. Soc. Vol. 134(1987), p.2950.

Google Scholar

[2] G. J. Hwang and H. Ohya: J. Membr. Sci. Vol. 120(1996), p.55.

Google Scholar

[3] K. L. Huang, X. Q. Li, S. Q. Liu, N Tan and L Q Chen: Renewable Energy Vol. 33(2008), p.186.

Google Scholar

[4] T. Mohammadi and M. Skyllas-Kazacos: J. Appl. Electrochem. Vol. 27(1997), p.153.

Google Scholar

[5] Y. P. Zhang, Y. Chen, Y. L. Zhou and P. He: Prog. Chem. Vol. 22 (2010), p.384 (In Chinese).

Google Scholar

[6] Q. T. Luo, H. M. Zhang, J. Chen, P. Qian and Y. F. Zhai: J. Membr. Sci. Vol. 311(2008), p.98.

Google Scholar

[7] J. Y. Xi, Z. H. Wu, X. P. Qiu and L. Q. Chen: J. Power Sources Vol. 166(2007), p.531.

Google Scholar

[8] B. Tian, C. W. Yan and F. H. Wang: J. Membr. Sci. Vol. 234(2004), p.51.

Google Scholar

[9] X. L. Zhong, K. L. Huang, G. X. Yuan, Y. Chang and W. Yuan: Chinese J. Power Sources, Vol. 33(2009), p.261 (In Chinese).

Google Scholar

[10] J. Y. Qiu, M. L. Zhai, J. H. Chen, Y. Wang, J. Peng, L. Xu, L. Q. Li and G. S. Wei: J. Membr. Sci. Vol. 342(2009), p.215.

Google Scholar

[11] B. Tian, C. W. Yan and F. H. Wang: J. Appl. Electrochem. Vol. 34(2004), p.1205.

Google Scholar

[12] C. K. Jia, J. G. Liu and C. W. Yan: J. Power Sources Vol. 195(2010), p.4380.

Google Scholar

[13] S. H. Zhang, C. X. Yin, D. B. Xing, D. L. Yang and X. G. Jian: J. Membr. Sci. Vol. 363(2010), p.243.

Google Scholar

[14] D. Y. Chen, S. J. Wang, M. Xiao and Y. Z. Meng: J. Power Sources Vol. 195(2010), p. (2089).

Google Scholar

[15] J. H. Fang, X. X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita and K. Okamoto: Macromolecules Vol. 35(2002), p.9022.

Google Scholar

[16] A. Kabasawa, J. Saito, H. Yano, K. Miyatake, H Uchida and M Watanabe: Electrochim. Acta Vol. 54(2009), p.1076.

Google Scholar

[17] N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida and M. Watanabe: JACS Vol. 128(2006), p.1762.

Google Scholar

[18] J. Y. Qiu, J. Z. Zhang, J. H. Chen, J. Peng, L. Xu, M. L. Zhai, J. Q. Li and G. S. Wei: J. Membr. Sci. Vol. 334(2009), p.9.

Google Scholar

[19] Y. Sone, P. Ekdunge and D. Simonsson: J. Electrochem. Soc. Vol. 143(1996), p.1254.

Google Scholar

[20] Y. H. Li, R. Z Jin, Z. M. Cui, Z. Wang, W. Xing, X. P. Qiu, X. L. Ji and L. X. Gao: Polymer Vol. 48(2007), p.2280.

Google Scholar

[21] T. Watari, J. H. Fang, K. Tanaka, H. Kita, K. Okamoto and T. Hirano: J. Membr. Sci. Vol. 230(2004), p.111.

Google Scholar