Effect of KCl on Crystal Morphology of Electrodepisited Cu2O Thin Films

Article Preview

Abstract:

Different morphology of Cu2O crystals were fabricated by electrochemical deposition using ITO and ITO/nano-TiO2 as working electrode. The effect of different KCl concentrations on the microstructure and surface morphology of Cu2O thin films were studied and the morphology controlled mechanism was also discussed. When the concentration of KCl was 7mmol/L, the shape of Cu2O crystals evolved from dentrite to similar cube on the ITO matrix. When the concentration of KCl was 5mmol/L, the shape of Cu2O crystals evolves from regular octahedron ({111} preferred orientation) to truncated cube ({100} preferred orientation) on the ITO/nano-TiO2 matrix. The results also indicate that the substrates played a key role in the particle size control.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2827-2830

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. E. R Brown and K. S. Chio, in: Chem. Commun., p.3311, 2006.

Google Scholar

[2] A. O. Musa, T. A. komolafe, M. J. Carter, in: Sol. Energy Mater. Sol. Cells, Vol. 51, p.305, 1998.

Google Scholar

[3] Sh. M. Chou, M. H. Hon, I. C. Leu, et al, in: J. Electrochem. Soc., Vol. 155, p. H923, 2008.

Google Scholar

[4] V. Georgieva, M. Ristov, in: Sol. Energy Mater. Sol. Cells, Vol. 73, p.67, 2002.

Google Scholar

[5] M. J. Siegfried, K. S. Choi, in: Angew. Chem. Int. Ed., Vol. 44, p.3218, 2005.

Google Scholar

[6] J.N. Nian, C.C. Hu, H. Teng, in: Int. J. Hydrogen Energy, Vol. 33, p.2897, 2008.

Google Scholar

[7] L. C. Wang, N. R. Tacconi, C. R. Chenthamarakshan, et al, in: Thin Solid Films, Vol. 515, p.3090, 2007.

Google Scholar

[8] H. Li, R. Liu, R. X. Zhao, et al, in: Cryst. Growth Des.,Vol. 6(12), p.2795, 2006.

Google Scholar

[9] J. B. Cui, U. J. Gibson, in: J. Phys. Chem. C,Vol. 114, p.6408, 2010.

Google Scholar

[10] A. S. Walton, M. Ł. Górzny, J. B. Bramble, et al, in: J. Electrochem. Soc., Vol. 156, p. K191, 2009.

Google Scholar

[11] Y. Zhou, J. A. Switzer, in: Scr. Mater., Vol. 38, p.1731, 1998.

Google Scholar

[12] G. Rothenberge, J. Moser, M. Gratzel, et al in: J. Am. Chem. Soc., Vol. 107 p.8054,1985.

Google Scholar

[13] J. S. Matthew, K. S. Choi, in: J. Am. Chem. Soc.,Vol. 128, p.10356, 2006.

Google Scholar

[14] G. Y. Krasnikov, V. P. Bokarev, in: Dokl. Phys. Chem., Vol. 382(1-3), p.14, 2002.

Google Scholar