Annealing Effects on Structural and Magnetic Properties of Al doped ZnO Thin Films

Article Preview

Abstract:

Al doped ZnO films have been prepared by dc magnetron sputtering. These films were annealed in different atmosphere and temperature. The crystal structures were analyzed by x-ray diffraction (XRD), and the magnetic properties were measured by a Physical Properties Measurement System (PPMS) with the magnetic field paralleled to the films plane. The results show the microstructure and magnetic properties were influenced by annealing atmosphere. Compared to the films annealed in vacuum, the films annealed in air shows obvious room temperature ferromagnetism, the magnetic moment increases about an order of magnitude. The room temperature ferromagnetism may be associated with a charge transfer between Al and Zn and the variational position of Al in ZnO films in different annealing ambience.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

2835-2838

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Dietl, H. Ohno ,and F. Matsukura: Science. Vol. 287 (2000), P. 1019

Google Scholar

[2] H. S. Hsu , J. C. A. Huang , Y. H. Huang , Y. F. Liao , M. Z. Lin , C. H. Lee , J. F. Lee , S. F. Chen , L. Y. Lai ,and C. P. Liu:  Appl. Phys. Lett. Vol. 88(2006), P. 242507

Google Scholar

[3] X. C. Liu, E. W. Shi, Z. Z. Chen, H. W. Zhang, B. Xiao , and L. X. Song: Appl. Phys. Lett. Vol. 88 (2006) , P. 252503

Google Scholar

[4] M. H. Kane, K. Shalini, C. J. Summers, R. Varatharajan, J. Nause, C. R. Vestal, Z. J. Zhang, and I. T. Ferguson: J. Appl. Phys. Vol. 97 (2005), P. 023906

Google Scholar

[5] L. Q. Liu, B. Xiang, X. Z. Zhang, Y. Zhang, and D. P. Yu: Appl.Phys.Lett . Vol. 88 (2006), P. 063104

Google Scholar

[6] D. L. Hou, X. J. Ye, H. J. Meng, H. J. Zhou, X. L. Li, C. M. Zhen, and G. D. Tang : Appl. Phys. Lett. Vol. 88(2006 ), P. 062508

Google Scholar

[7] T. S. Herng, S. P. Lau, S. F. Yu, H. Y. Yang, L. Wang, M. Tanemura, and. J. S. Chen: Appl. Phys. Lett. Vol. 90(2007), P. 032509

Google Scholar

[8] D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das : Phys. Rev. B. Vol. 75(2007), P. 144404

DOI: 10.1103/physrevb.75.144404

Google Scholar

[9] K. Samanta, P. Bhattacharya, and R. S. Katiyar: J. Appl. Phys. Vol. 105 ( 2009), P. 113929

Google Scholar

[10] Y. W. Ma, J. B. Yi, J. Ding, L. H. Van, H. T. Zhang, and C. M. Ng: Appl. Phys. Lett. Vol. 93 (2008), P. 042514

Google Scholar

[11] H. T. Zhang, J. Ding, and G. M. Chow: Langmuir. Vol. 24 (2008), P. 375

Google Scholar

[12] J. J. Gu, L. H. Liu, Y. K. Qi, Q. Xu, H. F. Zhang, and H. Y. Sun: J. Appl. Phys. Vol. 109(2011), P. 023902

Google Scholar

[13] Y. W. Ma, J. Ding, J. B. Yi, H. T. Zhang, and C. M. Ng: J. Appl. Phys. Vol. 105 (2009), P. 07C503

Google Scholar

[14] C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder: Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979)

Google Scholar

[15] V. Ney, S. Ye, T. Kammermeier: J. Appl. Phys. Vol. 104 (2008), P. 083904

Google Scholar