Synthesis of YVO4 Nanoparticles with Controllable Morphologies by Solvothermal Method

Article Preview

Abstract:

YVO4 nanoparticles with various morphologies were tuned directly by hydrothermal treatment in different solutions, including pure water, potassium hydroxide solution, hydrazine hydrate, ethanolamine, triethylamine, and pyridine. X-ray diffraction (XRD), Raman, and transmission electron microscopy (TEM) were utilized to characterize the structure, morphology, and size of the products, which indicated that tetragonal phase YVO4 crystallites displaying rod-like, square, and olivary shapes were obtained. It was found that the selected solvents play an important role in modulating the morphology and confining the size of the obtained products.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

356-359

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. S. Osvaldo, A. C. Simone, R. I. Renata, J. Alloys and Compounds Vol. 303-304 (2000), p.316.

Google Scholar

[2] K. Riwotzki and M. Haase, J. Phys. Chem. B Vol. 105 (2001), p.12709.

Google Scholar

[3] T. Tsuboi, Physica B 293 (2000), p.84.

Google Scholar

[4] M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. J. Zhang, and Y. C. Han, Chem. Mater. Vol. 14 (2002), p.2224.

Google Scholar

[5] H. J. Zhang, X. L. Meng, L. Zhu, P. Wang, X. S. Liu, Z. H. Yang, J. Dawes, and P. Dekkers, Phys. Stat. Sol. (a) Vol. 175 (1999), p.705.

Google Scholar

[6] X. L. Meng, L. Zhu, H. J. Zhang, C. Q. Wang, Y. T. Chow, and M. K. Lu, J. Cryst. Growth Vol. 200 (1999), p.199.

Google Scholar

[7] H. J. Zhang, X. L. Meng, L. Zhu, C. Q. Wang, Y. T. Chow, and M. K. Lu, Opt. Mater. Vol. 14 (2000), p.25.

Google Scholar

[8] M. B. Korzenski, Ph. Lecoeur, B. Mercey, and B. Raveau, Chem. Mater. Vol. 13 (2001), p.1545.

Google Scholar

[9] W. L. Wanmaker, A. Bril, J. W ter Vrugt, and J. Broos, Philips Res. Rep. Vol. 21 (1966), p.270.

Google Scholar

[10] E.A. Maunders, L.G. Deshazer, J. Opt. Soc. Vol. 61 (1971), p.684.

Google Scholar

[11] J. R. O'Connor, Appl. Phys. Lett. Vol. 9 (1966), p.407.

Google Scholar

[12] S. Ekambaram, K.C. Patil, J. Alloys Comp. Vol. 217 (1995), p.104.

Google Scholar

[13] S. Erdei, J. Mater. Sci. Vol. 30 (1995), p.4950.

Google Scholar

[14] A. Newport, J. Silver, A. Vecht, J. Electrochem. Sci. Vol. 147 (2000), p.3944.

Google Scholar

[15] L. D. Suna, Y. X. Zhang, J. Zhang, C. H. Yan, C. S. Liao, Y. Q. Lu, Solid State Comm. Vol. 124 (2002), p.35.

Google Scholar

[16] K. Riwotzki and M. Haase, J. Phys. Chem. B Vol. 102 (1998), p.10129.

Google Scholar

[17] A. Huignard, T. Gacoin, and J. P. Boilot, Chem. Mater. Vol. 12 (4) (2000), p.1090.

Google Scholar

[18] A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J. P. Boilot, Chem. Mater. Vol. 14 (2002), p.2264.

DOI: 10.1021/cm011263a

Google Scholar

[19] J. Hulliger, Angew. Chem., Int. Ed. Engl. Vol. 33 (1994), p.143.

Google Scholar

[20] J. H. Adair, T. Li, T. Kido, K. Havey, J. Moon, J. Mecholsky, A. Morrone, D. R. Talham, M. H. Ludwig and L. Wang, Mater. Sci. Eng. R Vol. 23 (1998), p.139.

DOI: 10.1016/s0927-796x(98)80001-6

Google Scholar

[21] W. Que, S. Buddhudu, Y. Zho, Y. L. Lam, J. Zho, Y. C. Chan, C. H. Kam, L. H. Gan and G. R. Deen, Mater. Sci. Eng. C Vol. 16 (2001), p.51.

Google Scholar

[22] A. J. Zarur and J. Ying, Nature Vol. 403 (2000), p.65.

Google Scholar

[23] J. Moom, T. Li, C. A. Randall, J. H. Adair, J. Mate. Res. Vol. 12 (1997), p.189.

Google Scholar

[24] G. W. Lu, C. X. Li, W. C. Wang, Z. H. Wang, H. R. Xia, and P. Zhao, Mate. Sci. Eng. B Vol. 98 (2003), p.156.

Google Scholar