Preparation and Characterization of Nanocrystalline Ce-Containing Layered Double Hydroxides

Article Preview

Abstract:

Ce-containing Layered Double Hydroxides (Ce-LDHs) were prepared by conventional and microwave-assisted crystallization method, which were denoted as Ce-LDHs-A and Ce-LDHs-B, respectively. The dispersibility of Ce-LDHs-B is much better than that of Ce-LDHs-A; the particles of Ce-LDHs-B with particle size ranging from 20 to 70 nm are smaller than that of Ce-LDHs-A with sizes around 50-300 nm. The effect of the cerium to aluminum molar ratios, microwave crystallization time and reaction temperature on the structure of Ce-LDHs was also investigated. The results show the excessive Ce into LDHs causes distortion of the samdwich, the damage of the LDHs structure becomes more and more serious with increasing the proportion of Ce/Al. The structure of Ce-LDHs becomes more and more perfect with the increasing of the microwave crystallization time and reaction temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

375-379

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.S. San Roma ´n, M.J. Holgado, C. Jaubertie, V. Rives, Solid State Sci. 10 (2008) 1333-1341.

Google Scholar

[2] F. Kooli, K. Kosuge, A. Tsunashima, J. Solid State Chem. 118 (1995) 285-291.

Google Scholar

[3] K.J. You, C.T. Chang, B.J. Liaw, C.T. Huang, Y.Z. Chen, Appl. Catal. A 361 (2009) 65-71.

Google Scholar

[4] P.C.H. Mitchell, S.A. Wass, Appl. Catal. A 225 (2002) 153-165.

Google Scholar

[5] J. Ashok, M. Subrahmanyam, A. Venugopal, Int. J. Hydrogen Energy 33 (2008) 2704-2713.

Google Scholar

[6] Y. Ding, E. Alpay, Process Saf. Environ. Prot. 79 (2001) 45-51.

Google Scholar

[7] T.S. Anirudhan, P.S. Suchithra, Appl. Clay Sci. 42 (2008) 214-223.

Google Scholar

[8] C.M.C. Pereira, M. Herrero, F.M. Labajos, A.T. Marques, V. Rives, Polym. Degrad. Stab. 94 (2009) 939-946.

Google Scholar

[9] S. Bocchini, S. Morlat-Therias, J.L. Gardette, G. Camino, Eur. Polym. J. 44 (2008) 3473-3481.

DOI: 10.1016/j.eurpolymj.2008.08.035

Google Scholar

[10] C.X. Chen, C.H Xu, L.R. Feng, Z.J. Li, J.S. Suo, F.L. Qiu, Adv. Synth. Catal. 347 (2005) 1848-1854.

Google Scholar

[11] P.Y. Jia, M. Yu and J. Lin, J. Solid State Chem. 178 (2005) 305–311

Google Scholar

[12] P.Y. Jia, J. Lin , M. Yu, Mater. Res. Bull. 42 (2007) 1556–1564.

Google Scholar

[13] P. Castaño, T.A. Zepeda, B. Pawelec, M. Makkee, J.L.G. Fierro, J. Catal. 267 (2009) 30-39.

Google Scholar

[14] S. Li, D.V. Louzguine-Luzgin, G.Q. Xie, M. Sato, A. Inoue, Mater. Lett. 64 (2010) 235-238.

Google Scholar

[15] J.J. Wang, C.L. Huang, Mater. Lett. 60 (2006) 1280-1283.

Google Scholar

[16] E.T. Thostenson, T.W. Chou, Composites Part A 30 (1999) 1055-1071.

Google Scholar

[17] P. Courty, D. Durand, E. Freund, A. Sugier, J. Mol. Catal. 17 (1982) 241-254.

Google Scholar

[18] V. Rives, O. Prieto, A. Dubey, S. Kannan, J. Catal. 220 (2003) 161-171.

Google Scholar

[19] A. Dubey, V. Rives, S. Kannan, J. Mol. Catal. A Chem.181 (2002) 151-160.

Google Scholar

[20] C.B. Liu, X.K. Ye, R.Y. Zhan, Y. Wu. J. Mol. Catal. A. Chem. 112 (1996) 15-22.

Google Scholar

[21] Z.J. Zhang, C.H. Xu, F.L. Qiu, X.J. Mei, B. Lan, S.S. Zhang, Sci. China Ser. B 47 (6) (2004) 488-498.

Google Scholar