Role of Crystallitic Carbon in the Preparation of Mg-Based Hydrogen Storage Materials by Reactive Milling

Abstract:

Article Preview

Magnesium-based hydrogen storage powders were prepared by reactive milling under hydrogen atmosphere. The crystallitic carbon, prepared from anthracite coal by demineralization and carbonization, was used as milling aid and synergic hydrogen storage additive of magnesium. Dispersive powders of particle size about 20 to 60 nm and hydrogen capacity of 4.78 wt.% were prepared from magnesium with 40 wt.% of crystallitic carbon by 3 h of milling under 1 MPa of hydrogen atmosphere. The hydrogen stored in carbon increased with the addition of Al, Mo, Co and Fe. FT-IR showed that the carbon atoms at the edges of crystallitic carbon particles were hydrogenated into C-H during reactive milling with hydrogen. The initial dehydrogenation temperature of hydrogen-storage material 60Mg40C is 275.8 °C, and its dehydrogenation plateau pressure at 300 °C is 0.2 MPa and the length of the plateau is 5.0 wt.% of hydrogen capacity.

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Edited by:

Zhong Cao, Xueqiang Cao, Lixian Sun, Yinghe He

Pages:

69-72

DOI:

10.4028/www.scientific.net/AMR.239-242.69

Citation:

S. X. Zhou et al., "Role of Crystallitic Carbon in the Preparation of Mg-Based Hydrogen Storage Materials by Reactive Milling", Advanced Materials Research, Vols. 239-242, pp. 69-72, 2011

Online since:

May 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.