Hydrothermal Synthesis and Charaction of α-Fe2O3 Mesocrystals and Nanorings

Article Preview

Abstract:

α-Fe2O3 mesocrystals and nanorings have been prepared by hydrothermal method, using phosphate and sulfate ions as additives. Hydrothermal treated at 180 °C for 24 h in presence of C3H8NO6P and Na2SO4 leads to the formation of capsule-shaped α-Fe2O3 mesocrystals, when the reaction time prolonged to 96 h α-Fe2O3 nanorings formed. It can tune the size and morphology of the final products by varying the ratios of phosphate and sulfate ions to ferric ions. XRD, SEM, TEM, HRTEM, UV-Vis, FT-IR were used to characterize the products. A formation process involving the selective adsorption and the cooperative coordination effect have been deduced.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

886-890

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnar, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Science 2001, 294, 1488–1495.

DOI: 10.1126/science.1065389

Google Scholar

[2] Cowburn, P.; Welland, M. E. Science 2000, 287, 1466–1468.

Google Scholar

[3] Zhu, J. G.; Zheng, Y. F.; Prinz, G. A. J. Appl. Phys. 2000, 87, 6668– 6673.

Google Scholar

[4] Ando, M.; Kadono, K.; Haruta, M.; Sakaguchi, T.; Miya, M. Nature 1995, 374, 625.

Google Scholar

[5] Sun, Z. Y.; Yuan, H. Q.; Yuan, H. Q.; Liu, Z. M.; Han, B. X.;Zhang, X. R. AdV. Mater. 2005, 17, 2993.

Google Scholar

[6] Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. AdV. Mater. 2005, 17,582.

Google Scholar

[7] Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.;Wan, L. J. AdV. Mater. 2006, 18, 2426.

Google Scholar

[8] Hu, X. L.; Yu, Jimmy, C. AdV. Funct. Mater. 2008, 18, 880.

Google Scholar

[9] Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren,J.; Guo, J. H. AdV. Mater. 2005, 17, 2320.

DOI: 10.1002/adma.200500992

Google Scholar

[10] Wang, G. X.; Gou, X. L.; Horvat, J.; Park, J. J. Phys. Chem. C 2008, 112, 15220.

Google Scholar

[11] Zheng, Z.; Chen, Y. Z.; Shen, Z. X.; Ma, J.; Sow, C. H.; Huang,W.; Yu, T. Appl. Phys. A: Mater. Sci. Process. 2007, 89, 115.

Google Scholar

[12] Li, L. L.; Chu, Y.; Liu, Y. Nanotechnology 2007, 18, 105603.

Google Scholar

[13] Schmidt, O. G.; Eberl, K. Nature 2001, 410, 168.

Google Scholar

[14] Xiong, Y. J.; Mayers, B. T.; Xia, Y. N. Chem. Commun. 2005, 40, 5013.

Google Scholar

[15] Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen,M. L.; Louie, S.

Google Scholar

[16] Chun-Jiang Jia, Ling-Dong Sun, Feng Luo, Xiao-Dong Han,Laura J. Heyderman, Zheng-Guang Yan, Chun-Hua Yan, Kun Zheng,Ze Zhang, Mikio Takano,Naoaki Hayashi,Matthias Eltschka,Mathias Klaui,Ulrich Rudiger, Takeshi Kasama, Lionel Cervera-Gontard,Rafal E. Dunin-Borkowski, George Tzvetkov, and Jorg Raabe. J. Am. Chem. Soc., 2008, 130 (50), p.16968–16977.

DOI: 10.1021/ja805152t

Google Scholar

[17] Jin, R. C.; Cao, Y. C.; Hao, E. C.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature 2003, 425, 487.

Google Scholar

[18] Peng, X. G. Adv. Mater. 2003, 15, 459.

Google Scholar

[19] Lee, S. M.; Cho, S. N.; Cheon, J. Adv.Mater. 2003, 15, 441.

Google Scholar

[20] Zhou, H. S.; Mito, A.; Kundu, D.; Honma, I. J. Sol-Gel Sci. Technol.2000, 19, 539.

Google Scholar