The Ferroelectric Characteristics of Ba(Zr0.1Ti0.9)O3 Thin Films under Post-Annealing Treatment for Applications in Nonvolatile Memory Devices

Article Preview

Abstract:

In this study, we investigated that of Al/ Ba(Zr0.1Ti0.9)O3 (BZT)/Pt/Ti/SiO2/Silicon metal-ferroelectric-metal-insulator-semiconductor (MFM) ferroelectric structures and found the memory effect and capacitance of annealed BZT films during the different annealing temperature. Additionally, the capacitance and leakage current density were about 4.3 nF and 1´10-6A/cm2, respectively. From C-V curves, the ferroelectric properties and charges accumulation of annealed BZT films were also found during the annealing temperature of 700°C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

895-898

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Y. Wu, IEEE Trans. Electron Devices ED-21, (1974) 499.

Google Scholar

[2] S. Y. Wu, Ferroelectrics, 11 (1976) 379.

Google Scholar

[3] H. Buhay, S. Sinharoy, W. H. Kasner, M. H. Francombe, D. R. Lampe and E. Stepke, Appl. Phys. Lett., 58 (1991) 1470.

DOI: 10.1063/1.105200

Google Scholar

[4] P. J. Harrop and D. S. Campbell: Thin Solid Films 2, (1968) 273.

Google Scholar

[5] F. T. Wooten: Proc. IEEE 55, (1967) 564.

Google Scholar

[6] R. S. Muller and J. Conragan: IEEE Trans. Electron. Devies ED-12, (1965) 590.

Google Scholar

[7] J. R. Fiebiger and R. S. Muller: J. Appl. Phys. 38, (1967) 1948.

Google Scholar

[8] A. B. Kaufman: IEEE Trans. Electron. Devices ED-16, (1969) 562.

Google Scholar

[9] N. F. Borelli and M. M. Layton: IEEE Trans. Electron. Devices ED-16, (1969) 511.

Google Scholar

[10] G. W. Taylor: IEEE Trans. Electron. Devices ED-16, (1969) 565.

Google Scholar

[11] S. S. Park and S. G.. Yoon: Jpn. J. Appl. Phys. 39 (2000) 1177.

Google Scholar

[12] W. S. Choi, B. S. Jang, Y. Roh, J. Yi and B. Hong: J. Non-Crystalline Solids 303 (2002) 190.

Google Scholar

[13] I. C. Ho and S. L. Fu: J. Materials Sci. 25 (1990) 4699.

Google Scholar

[14] S. L. Fu, I. C. Ho and L. S. Chen: J. Materials Sci. 25 (1990) 4042.

Google Scholar

[15] J. S. Kim and S. G. Yoon: J. Vac. Sci. Technol. B 18 (2000) 216.

Google Scholar

[16] A. D. Li, D. Wu, H. Q. Ling, M. Wang, Z. Liu and N. Ming: J. Crystal Growth 235 (2002) 394.

Google Scholar

[17] V. R. Palkar, S. Chattopadhyay, S. C. Purandare, S. G. Lokhre, R. Pinto and M/ S Multani: Materials Letter 33 (1997) 1.

Google Scholar

[18] J Li, L. Zhang, X. Yao and J. Wang: Ceramics International 30 (2004) 1509.

Google Scholar

[19] M. L. Calzada, A. Gonzalez, R. Jimenez, C. Alemany and J. Mendiola: J. European Ceramic Soc. 21 (2001) 1517. Figure 1: The electrical measurement properties of the MFM structure. Figure 2: The XRD of (a) non-annealed and annealed (b) 600oC(c) 700oC (d) 800oC BZT films. Figure 3: The capacitance-voltage characteristics of the annealed BZT films. Figure 4: The leakage current density characteristics of the annealed BZT films. Figure 5: The lnJ-E1/2 curves of the annealed BZT films.

DOI: 10.7554/elife.32744.016

Google Scholar